JeecgBoot项目中Excel导入校验的实现方法解析
2025-05-02 07:16:37作者:仰钰奇
在JeecgBoot项目开发过程中,Excel数据导入是一个常见的功能需求。本文将详细介绍如何在JeecgBoot 3.7.4版本中实现Excel导入数据的校验功能,帮助开发者解决实际项目中遇到的数据验证问题。
Excel导入校验的重要性
在企业级应用开发中,Excel导入功能经常用于批量数据录入。然而,原始数据可能存在各种问题:
- 数据格式不符合要求
- 必填字段为空
- 数据违反业务规则
- 与现有数据冲突
因此,在数据真正入库前进行严格的校验至关重要,可以避免脏数据污染系统,保证数据质量。
JeecgBoot中的Excel导入校验实现
JeecgBoot基于AutoPoi库实现Excel导入功能。在3.7.4版本中,虽然AutoPoi 1.4.11缺少IExcelModel和IExcelDataModel等接口,但项目提供了替代的校验方案。
核心实现方法
项目中的SysDictController类提供了一个标准的Excel导入校验实现范例:
@PostMapping(value = "/importExcel")
public Result<?> importExcel(HttpServletRequest request, HttpServletResponse response) {
MultipartHttpServletRequest multipartRequest = (MultipartHttpServletRequest) request;
// 获取上传文件
Map<String, MultipartFile> fileMap = multipartRequest.getFileMap();
try {
// 遍历处理每个上传文件
for (Map.Entry<String, MultipartFile> entity : fileMap.entrySet()) {
MultipartFile file = entity.getValue();
ImportParams params = new ImportParams();
params.setTitleRows(2);
params.setHeadRows(1);
params.setNeedSave(true);
// 执行导入
List<SysDict> listSysDicts = ExcelImportUtil.importExcel(
file.getInputStream(),
SysDict.class,
params
);
// 校验数据
for (SysDict dict : listSysDicts) {
// 执行各种校验逻辑
if(StringUtils.isBlank(dict.getDictName())) {
return Result.error("字典名称不能为空");
}
// 其他校验规则...
}
// 保存有效数据
service.saveBatch(listSysDicts);
return Result.ok("文件导入成功!数据行数:" + listSysDicts.size());
}
} catch (Exception e) {
log.error(e.getMessage(), e);
return Result.error("文件导入失败:" + e.getMessage());
}
return Result.error("文件导入失败!");
}
校验流程详解
- 文件接收:通过MultipartHttpServletRequest接收上传的Excel文件
- 导入参数设置:使用ImportParams配置导入参数,如标题行数、表头行数等
- 数据解析:通过ExcelImportUtil将Excel数据解析为Java对象列表
- 业务校验:遍历解析后的数据,执行各种业务规则校验
- 结果处理:根据校验结果返回成功或错误信息
高级校验技巧
在实际项目中,可以扩展基础校验功能:
1. 多级校验
// 第一级:基础字段校验
if(StringUtils.isBlank(dict.getDictName())) {
return Result.error("字典名称不能为空");
}
// 第二级:业务规则校验
if(dict.getDictName().length() > 50) {
return Result.error("字典名称长度不能超过50个字符");
}
// 第三级:数据库校验
if(service.existsDictByName(dict.getDictName())) {
return Result.error("字典名称已存在");
}
2. 批量校验与错误收集
List<String> errorMessages = new ArrayList<>();
for(int i=0; i<listSysDicts.size(); i++) {
SysDict dict = listSysDicts.get(i);
int rowNum = i + 1 + params.getTitleRows() + params.getHeadRows();
if(StringUtils.isBlank(dict.getDictName())) {
errorMessages.add("第"+rowNum+"行:字典名称不能为空");
}
// 其他校验...
}
if(!errorMessages.isEmpty()) {
return Result.error(String.join("<br/>", errorMessages));
}
3. 自定义校验器
可以抽象出校验逻辑,提高代码复用性:
public class DictImportValidator {
public static List<String> validate(SysDict dict, int rowNum) {
List<String> errors = new ArrayList<>();
if(StringUtils.isBlank(dict.getDictName())) {
errors.add("第"+rowNum+"行:字典名称不能为空");
}
// 其他校验规则...
return errors;
}
}
性能优化建议
对于大数据量导入,应考虑以下优化措施:
- 分批处理:将大数据集分成小批次处理,避免内存溢出
- 异步导入:对于耗时操作,采用异步处理方式
- 缓存机制:缓存频繁访问的校验数据,减少数据库查询
- 并行校验:对无依赖关系的校验规则使用并行流处理
总结
JeecgBoot虽然在某些版本中缺少特定的Excel校验接口,但通过合理的代码设计仍然能够实现强大的Excel导入校验功能。开发者可以根据实际业务需求,在基础校验方案上进行扩展,构建适合自己项目的校验体系。关键是要在数据入库前进行全面验证,确保系统数据的完整性和一致性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1