Jackson-databind 中 JsonSerializer 的正确使用方式:writeRaw 与 writeRawValue 的区别
在 Java 的 JSON 处理领域,Jackson 是最受欢迎的库之一。其中 jackson-databind 模块提供了强大的对象序列化和反序列化功能。本文将深入探讨一个常见的序列化陷阱:JsonSerializer 中 writeRaw 和 writeRawValue 方法的区别。
问题现象
开发者在自定义序列化器时,可能会遇到 JSON 输出格式不正确的问题。具体表现为字段名和字段值之间缺少必要的冒号分隔符,导致生成的 JSON 格式错误。例如:
{
"inner" {
"a" : "b"
}
}
正确的 JSON 应该在 "inner" 和后面的对象之间有一个冒号:
{
"inner" : {
"a" : "b"
}
}
问题根源
这个问题的根本原因在于错误地使用了 JsonGenerator 的 writeRaw 方法。writeRaw 方法如其名,会直接将字符串原样写入输出,不做任何格式化处理,包括不会添加必要的分隔符。
解决方案
正确的做法是使用 writeRawValue 方法。这个方法不仅会写入内容,还会确保 JSON 结构的完整性,自动添加必要的分隔符和格式。
public class InnerSerializer extends JsonSerializer<Inner> {
@Override
public void serialize(Inner value, JsonGenerator gen, SerializerProvider serializers) throws IOException {
gen.writeRawValue("{\"a\": \"b\"}"); // 使用 writeRawValue 而非 writeRaw
}
}
方法对比
| 方法 | 行为 | 适用场景 |
|---|---|---|
| writeRaw | 直接写入原始字符串,不做任何处理 | 需要完全控制输出内容,如写入注释等非标准JSON内容 |
| writeRawValue | 写入内容并确保JSON结构完整 | 标准JSON序列化场景 |
最佳实践
-
优先使用 writeRawValue:在大多数标准JSON序列化场景下,应该使用 writeRawValue 方法。
-
谨慎使用 writeRaw:只有在需要完全控制输出内容,或者需要写入非标准JSON内容(如注释)时才使用 writeRaw。
-
考虑使用标准序列化方法:对于简单场景,考虑使用 gen.writeStartObject() 和 gen.writeFieldName() 等标准方法,而不是直接写入原始字符串。
总结
理解 Jackson 中不同写入方法的区别对于生成正确的 JSON 格式至关重要。writeRawValue 方法会自动处理 JSON 结构所需的格式元素,而 writeRaw 则提供更底层、更直接的控制。在大多数情况下,writeRawValue 是更安全、更合适的选择。
通过正确使用这些方法,开发者可以避免 JSON 格式错误,确保应用程序与其他系统的顺畅交互。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00