首页
/ 融合生物分子与自然语言的跨模态学习资源指南

融合生物分子与自然语言的跨模态学习资源指南

2024-09-12 23:07:24作者:裴锟轩Denise

项目介绍

本项目是针对论文《通过多模态学习利用生物分子与自然语言:一项调查》的资源集合。这个领域正处于人工智能、化学及生物学交叉口的一个新兴趋势,旨在结合文本数据中丰富的生物分子描述,提升我们对这些分子的理解,并促进如分子属性预测等计算任务的能力。通过融合自然语言中的细致叙述与通过各种分子建模技术描述的生物分子的结构与功能特性,该项目开启了一种全面表征与分析生物分子的新途径。

项目快速启动

安装依赖

首先,确保你的开发环境中安装了Git和Python(推荐版本3.8或更高)。然后克隆此项目到本地:

git clone https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.git
cd Awesome-Biomolecule-Language-Cross-Modeling

接下来,根据项目的requirements.txt文件安装必要的Python库:

pip install -r requirements.txt

快速体验

尽管该仓库主要是资源清单而非可立即执行的软件包,但你可以从研究列出的模型和库开始,比如使用BioBERT进行文本挖掘或探索MolT5用于跨模态的分子检索。以MolT5为例,快速开始可能涉及下载预训练模型并运行示例代码:

# 示例代码需要参照MolT5的具体使用说明
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("ZhiPei/LM-BioCrossModel")
model = AutoModelForSeq2SeqLM.from_pretrained("ZhiPei/LM-BioCrossModel")

input_text = "分子具有抗炎特性"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs["input_ids"])
decoded_output = tokenizer.decode(outputs[0])

print(decoded_output)

请注意,以上代码仅为示意,具体实现需依据所选模型的官方文档调整。

应用案例和最佳实践

项目提供了多种应用案例,包括但不限于药物发现、蛋白质功能预测和生物质预测。例如,利用BioBART进行文献摘要生成,或者使用MolGPT进行基于文本的分子生成。最佳实践通常涉及选择正确的预训练模型来匹配特定的任务需求,并且在特定的生物医学或化学数据集上进行微调。

典型生态项目

生态系统内涵盖了多个相关项目和资源,如:

  • BioTransformer: 大型生物医学语言模型系列。
  • SciBERT: 针对科学文本的预训练语言模型。
  • PubMedBERT: 基于PubMed数据库预训练的模型。
  • ProteinBERT: 专门针对蛋白质序列的模型。
  • Multi-modal Molecule Structure-text Models (AMAN): 结合分子图与自然语言处理的模型。

这些生态项目不仅丰富了生物分子与自然语言交叉领域的工具箱,也为研究人员提供了强大的基础模型,以解决复杂的生物信息学问题。


本指南提供了一个概览,深入学习每个模型和应用将要求更详细地查阅各自文档和研究成果。加入社区,共同推动这一前沿领域的进步。

登录后查看全文
热门项目推荐

项目优选

收起