OpenBMB/OmniLMM项目中视觉嵌入向量尺寸问题解析
2025-05-11 01:41:26作者:龚格成
背景介绍
在OpenBMB/OmniLMM项目中,用户在使用视觉语言模型MiniCPMv2.6获取图像嵌入向量时,发现了一个有趣的现象:输入不同尺寸的图像会导致输出的嵌入向量维度不一致。这种现象引发了关于模型稳定性和嵌入向量一致性的技术讨论。
问题现象
当用户按照项目文档中的方法使用model.get_vllm_embedding(batch_img)获取图像嵌入时,发现:
- 输入不同尺寸的图像会产生不同维度的嵌入向量
- 观察到495×3500、496×3500等不同尺寸的输出
- 某些情况下甚至会出现完全不同的尺寸结构
技术原理分析
这种现象实际上反映了视觉语言模型中视觉特征提取的底层机制。在大多数视觉语言模型中:
- 图像首先被分割成固定大小的patch(通常是16×16像素)
- 每个patch会被转换为一个特征向量
- 这些特征向量构成了最终的视觉嵌入表示
因此,嵌入向量的第一维度实际上对应于图像中的patch数量,而第二维度则是每个patch的特征维度(通常是固定的3500)。
为什么会出现尺寸变化
导致嵌入向量尺寸变化的主要原因包括:
- 图像原始尺寸差异:不同分辨率的图像会产生不同数量的patch
- 预处理策略:模型可能对输入图像进行resize或padding处理
- 注意力机制:某些模型会保留空间位置信息,导致特征数量与原始图像结构相关
解决方案与最佳实践
虽然这种现象在技术上是合理的,但在实际应用中可能需要固定尺寸的嵌入表示。可以考虑以下方法:
- 统一输入尺寸:在预处理阶段将所有图像调整为相同分辨率
- 全局池化:对patch特征进行平均或最大池化,获得固定维度
- 使用CLS token:如果模型支持,可以使用CLS token的特征作为全局表示
对下游任务的影响
这种变长嵌入表示在不同场景下各有利弊:
优点:
- 保留了图像的空间结构信息
- 对高分辨率图像能提供更丰富的细节
缺点:
- 增加了特征对齐的复杂度
- 不便于直接用于需要固定维度输入的下游模型
总结
OpenBMB/OmniLMM项目中观察到的嵌入向量尺寸变化现象,实际上是现代视觉语言模型的常见设计选择。理解这一机制有助于开发者更好地设计预处理流程和后处理方案,从而在不同应用场景中充分发挥模型的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355