OpenBMB/OmniLMM项目中视觉嵌入向量尺寸问题解析
2025-05-11 06:25:06作者:龚格成
背景介绍
在OpenBMB/OmniLMM项目中,用户在使用视觉语言模型MiniCPMv2.6获取图像嵌入向量时,发现了一个有趣的现象:输入不同尺寸的图像会导致输出的嵌入向量维度不一致。这种现象引发了关于模型稳定性和嵌入向量一致性的技术讨论。
问题现象
当用户按照项目文档中的方法使用model.get_vllm_embedding(batch_img)获取图像嵌入时,发现:
- 输入不同尺寸的图像会产生不同维度的嵌入向量
- 观察到495×3500、496×3500等不同尺寸的输出
- 某些情况下甚至会出现完全不同的尺寸结构
技术原理分析
这种现象实际上反映了视觉语言模型中视觉特征提取的底层机制。在大多数视觉语言模型中:
- 图像首先被分割成固定大小的patch(通常是16×16像素)
- 每个patch会被转换为一个特征向量
- 这些特征向量构成了最终的视觉嵌入表示
因此,嵌入向量的第一维度实际上对应于图像中的patch数量,而第二维度则是每个patch的特征维度(通常是固定的3500)。
为什么会出现尺寸变化
导致嵌入向量尺寸变化的主要原因包括:
- 图像原始尺寸差异:不同分辨率的图像会产生不同数量的patch
- 预处理策略:模型可能对输入图像进行resize或padding处理
- 注意力机制:某些模型会保留空间位置信息,导致特征数量与原始图像结构相关
解决方案与最佳实践
虽然这种现象在技术上是合理的,但在实际应用中可能需要固定尺寸的嵌入表示。可以考虑以下方法:
- 统一输入尺寸:在预处理阶段将所有图像调整为相同分辨率
- 全局池化:对patch特征进行平均或最大池化,获得固定维度
- 使用CLS token:如果模型支持,可以使用CLS token的特征作为全局表示
对下游任务的影响
这种变长嵌入表示在不同场景下各有利弊:
优点:
- 保留了图像的空间结构信息
- 对高分辨率图像能提供更丰富的细节
缺点:
- 增加了特征对齐的复杂度
- 不便于直接用于需要固定维度输入的下游模型
总结
OpenBMB/OmniLMM项目中观察到的嵌入向量尺寸变化现象,实际上是现代视觉语言模型的常见设计选择。理解这一机制有助于开发者更好地设计预处理流程和后处理方案,从而在不同应用场景中充分发挥模型的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217