MMKV 开源项目教程
2024-08-16 14:01:05作者:侯霆垣
项目介绍
MMKV 是一个高效、小巧、易用的移动键值存储框架,由微信团队开发。它利用 mmap 和 protobuf 编码/解码值,确保内存与文件同步,从而在 Android、iOS/macOS、Windows、POSIX 和 HarmonyOS NEXT 等多个平台上实现最佳性能。MMKV 支持多进程并发访问,易于使用,所有更改都会立即保存,无需同步或应用调用。
项目快速启动
安装
首先,从 GitHub 克隆 MMKV 项目:
git clone https://github.com/Tencent/MMKV.git
在 Android 项目中集成
在项目的根目录下的 build.gradle
文件中添加以下依赖:
buildscript {
repositories {
mavenCentral()
}
}
allprojects {
repositories {
mavenCentral()
}
}
在应用模块的 build.gradle
文件中添加以下依赖:
dependencies {
implementation 'com.tencent:mmkv-static:1.2.10'
}
初始化
在 Application
类中初始化 MMKV:
import com.tencent.mmkv.MMKV;
public class MyApplication extends Application {
@Override
public void onCreate() {
super.onCreate();
MMKV.initialize(this);
}
}
基本使用
import com.tencent.mmkv.MMKV;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
MMKV mmkv = MMKV.defaultMMKV();
mmkv.encode("string", "Hello from MMKV");
String str = mmkv.decodeString("string");
Log.d("MMKV", "Value: " + str);
}
}
应用案例和最佳实践
多进程访问
MMKV 支持多进程并发访问,适用于需要在多个进程间共享数据的场景。例如,在一个多进程的 Android 应用中,可以使用 MMKV 来存储和共享用户配置、缓存数据等。
MMKV mmkv = MMKV.mmkvWithID("shared", MMKV.MULTI_PROCESS_MODE);
mmkv.encode("shared_key", "shared_value");
String sharedValue = mmkv.decodeString("shared_key");
性能优化
MMKV 通过 mmap 和 protobuf 编码/解码值,确保了高效的读写性能。在实际应用中,可以通过对比 MMKV 和其他存储方案(如 SharedPreferences)的性能,选择最适合当前应用需求的存储方案。
典型生态项目
React Native 集成
MMKV 提供了 React Native 的绑定库 react-native-mmkv
,使得在 React Native 项目中也能轻松使用 MMKV。
npm install react-native-mmkv
在 React Native 项目中初始化和使用 MMKV:
import { MMKV } from 'react-native-mmkv';
const storage = new MMKV();
storage.set("string", "Hello from MMKV");
const value = storage.getString("string");
console.log(value); // 输出: Hello from MMKV
跨平台应用
MMKV 支持多个平台,包括 Android、iOS/macOS、Windows 和 POSIX,使得开发者可以在不同的平台上使用同一套存储方案,简化开发流程,提高开发效率。
通过以上教程,您可以快速上手并深入了解 MMKV 开源项目,将其应用于您的移动应用开发中。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28