MMKV 开源项目教程
2024-08-16 23:37:09作者:侯霆垣
项目介绍
MMKV 是一个高效、小巧、易用的移动键值存储框架,由微信团队开发。它利用 mmap 和 protobuf 编码/解码值,确保内存与文件同步,从而在 Android、iOS/macOS、Windows、POSIX 和 HarmonyOS NEXT 等多个平台上实现最佳性能。MMKV 支持多进程并发访问,易于使用,所有更改都会立即保存,无需同步或应用调用。
项目快速启动
安装
首先,从 GitHub 克隆 MMKV 项目:
git clone https://github.com/Tencent/MMKV.git
在 Android 项目中集成
在项目的根目录下的 build.gradle 文件中添加以下依赖:
buildscript {
repositories {
mavenCentral()
}
}
allprojects {
repositories {
mavenCentral()
}
}
在应用模块的 build.gradle 文件中添加以下依赖:
dependencies {
implementation 'com.tencent:mmkv-static:1.2.10'
}
初始化
在 Application 类中初始化 MMKV:
import com.tencent.mmkv.MMKV;
public class MyApplication extends Application {
@Override
public void onCreate() {
super.onCreate();
MMKV.initialize(this);
}
}
基本使用
import com.tencent.mmkv.MMKV;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
MMKV mmkv = MMKV.defaultMMKV();
mmkv.encode("string", "Hello from MMKV");
String str = mmkv.decodeString("string");
Log.d("MMKV", "Value: " + str);
}
}
应用案例和最佳实践
多进程访问
MMKV 支持多进程并发访问,适用于需要在多个进程间共享数据的场景。例如,在一个多进程的 Android 应用中,可以使用 MMKV 来存储和共享用户配置、缓存数据等。
MMKV mmkv = MMKV.mmkvWithID("shared", MMKV.MULTI_PROCESS_MODE);
mmkv.encode("shared_key", "shared_value");
String sharedValue = mmkv.decodeString("shared_key");
性能优化
MMKV 通过 mmap 和 protobuf 编码/解码值,确保了高效的读写性能。在实际应用中,可以通过对比 MMKV 和其他存储方案(如 SharedPreferences)的性能,选择最适合当前应用需求的存储方案。
典型生态项目
React Native 集成
MMKV 提供了 React Native 的绑定库 react-native-mmkv,使得在 React Native 项目中也能轻松使用 MMKV。
npm install react-native-mmkv
在 React Native 项目中初始化和使用 MMKV:
import { MMKV } from 'react-native-mmkv';
const storage = new MMKV();
storage.set("string", "Hello from MMKV");
const value = storage.getString("string");
console.log(value); // 输出: Hello from MMKV
跨平台应用
MMKV 支持多个平台,包括 Android、iOS/macOS、Windows 和 POSIX,使得开发者可以在不同的平台上使用同一套存储方案,简化开发流程,提高开发效率。
通过以上教程,您可以快速上手并深入了解 MMKV 开源项目,将其应用于您的移动应用开发中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140