TypeGraphQL 订阅系统升级解析:从graphql-subscriptions到yoga的迁移指南
TypeGraphQL作为一款强大的GraphQL框架,近期在2.0.0-beta版本中对订阅系统进行了重大升级,将底层依赖从graphql-subscriptions迁移到了@graphql-yoga/subscription。这一变更虽然带来了性能提升和功能增强,但也导致了一些兼容性问题,特别是对于仍在使用graphql-subscriptions的开发者而言。
兼容性问题分析
在TypeGraphQL 2.0.0-beta版本中,最显著的变更之一是PubSub接口的重新定义。新版本要求PubSub实现必须返回一个AsyncIterable对象,而graphql-subscriptions的PubSub实现返回的是Promise,这导致了类型不匹配的错误。
具体表现为:
The types returned by 'subscribe(...)' are incompatible between these types.
Property '[Symbol.asyncIterator]' is missing in type 'Promise<number>' but required in type 'AsyncIterable<unknown>'
解决方案
对于需要继续使用graphql-subscriptions的开发者,有以下几种解决方案:
-
使用适配器模式:可以创建一个适配器类,将graphql-subscriptions的PubSub接口转换为符合TypeGraphQL新要求的接口。
-
降级使用兼容版本:TypeGraphQL 2.0.0-beta.3版本仍支持graphql-subscriptions,可以作为临时解决方案。
-
完全迁移到yoga订阅系统:这是官方推荐的长期解决方案,能获得更好的性能和功能支持。
迁移到yoga订阅系统的优势
-
更现代的架构设计:yoga订阅系统采用了更新的技术栈,提供了更好的性能和可扩展性。
-
更丰富的功能支持:支持多种事件目标和更灵活的订阅机制。
-
官方维护保障:作为TypeGraphQL官方推荐的解决方案,将获得长期支持和更新。
实际迁移步骤
- 首先更新TypeGraphQL到最新beta版本
- 移除graphql-subscriptions依赖
- 安装@graphql-yoga/subscription
- 按照新API重构订阅相关代码
总结
TypeGraphQL 2.0.0的订阅系统升级虽然带来了一些迁移成本,但从长远来看是必要的技术演进。开发者可以根据项目实际情况选择适配器方案或完全迁移到新系统。对于新项目,建议直接采用yoga订阅系统以获得最佳体验。
这一变更也反映了GraphQL生态系统的持续演进,作为开发者,保持对核心依赖更新的关注并及时调整技术栈,是保证项目长期健康发展的关键。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









