Setuptools 中嵌套数据目录安装问题的深度解析
2025-06-29 01:50:05作者:齐添朝
问题背景
在 Python 打包工具 setuptools 的使用过程中,开发者经常会遇到数据文件安装的问题。近期有用户反馈了一个特殊场景:当使用 setuptools 打包包含嵌套子目录的数据文件时,某些情况下子目录无法正确安装到目标位置。
现象描述
具体表现为:在项目结构中存在类似 some_package/data/subdir/ 的嵌套目录结构,并在 package_data 配置中使用 glob 模式匹配(如 "data/**")时,在某些环境下(特别是旧版 pip 22.2 及以下版本)subdir 目录及其内容不会被安装到目标位置。
技术原理分析
Python 包与命名空间
在 Python 中,任何包含 __init__.py 文件的目录都被视为常规包,而没有 __init__.py 的目录则被视为命名空间包(namespace package)。setuptools 对这两种包的处理方式有所不同:
- 常规包:通过
find_packages()自动发现 - 命名空间包:需要通过
find_namespace_packages()显式声明
数据文件安装机制
setuptools 安装数据文件时遵循以下逻辑:
- 首先确保目标包目录存在(无论是常规包还是命名空间包)
- 然后根据
package_data配置将匹配的文件复制到对应位置 - 对于嵌套目录结构,需要保证每一级目录都被正确处理
解决方案
方法一:添加 init.py
最简单的解决方案是在每个子目录中添加 __init__.py 文件,将其转换为常规 Python 包:
some_package/
data/
__init__.py
subdir/
__init__.py
file2.txt
方法二:使用命名空间包
如果不想添加 __init__.py 文件,可以改用命名空间包:
from setuptools import setup, find_namespace_packages
setup(
packages=find_namespace_packages(),
package_data={
"some_package.data": ["*", "*/*"] # 匹配当前目录和一级子目录
}
)
方法三:通用匹配模式
对于复杂项目,可以使用更通用的匹配模式:
package_data = {pkg: ["*"] for pkg in find_namespace_packages()}
或者在 pyproject.toml 中配置:
[tool.setuptools]
package-data = {"*" = ["*"]}
环境差异说明
值得注意的是,这个问题在不同环境下表现可能不同:
- 本地虚拟环境 vs Docker 容器环境
- 不同 pip 版本(特别是 pip 22.x 与 23.x+ 之间的行为变化)
- 直接安装 vs 通过 wheel/sdist 安装
建议开发者:
- 始终使用较新的 pip 版本(23.0.0+)
- 优先通过 wheel 分发包
- 在 CI 中测试多种安装场景
最佳实践建议
- 明确声明包结构:清晰定义哪些是 Python 包,哪些是纯数据目录
- 优先使用 pyproject.toml:新的配置方式更简洁明确
- 测试多种安装方式:包括直接安装、wheel 安装和 sdist 安装
- 保持工具更新:使用较新版本的 setuptools 和 pip
- 文档记录:在项目文档中明确说明数据文件的处理方式
总结
setuptools 中数据文件的处理涉及 Python 包机制、glob 模式匹配和工具链协作等多个方面。理解这些底层原理有助于开发者正确配置项目打包方式,避免出现数据文件丢失的问题。对于嵌套目录结构,建议要么明确声明为包(添加 __init__.py),要么使用命名空间包并配置适当的 glob 模式。同时,保持工具链更新可以避免许多兼容性问题。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178