Setuptools 中嵌套数据目录安装问题的深度解析
2025-06-29 07:55:06作者:齐添朝
问题背景
在 Python 打包工具 setuptools 的使用过程中,开发者经常会遇到数据文件安装的问题。近期有用户反馈了一个特殊场景:当使用 setuptools 打包包含嵌套子目录的数据文件时,某些情况下子目录无法正确安装到目标位置。
现象描述
具体表现为:在项目结构中存在类似 some_package/data/subdir/
的嵌套目录结构,并在 package_data
配置中使用 glob 模式匹配(如 "data/**"
)时,在某些环境下(特别是旧版 pip 22.2 及以下版本)subdir
目录及其内容不会被安装到目标位置。
技术原理分析
Python 包与命名空间
在 Python 中,任何包含 __init__.py
文件的目录都被视为常规包,而没有 __init__.py
的目录则被视为命名空间包(namespace package)。setuptools 对这两种包的处理方式有所不同:
- 常规包:通过
find_packages()
自动发现 - 命名空间包:需要通过
find_namespace_packages()
显式声明
数据文件安装机制
setuptools 安装数据文件时遵循以下逻辑:
- 首先确保目标包目录存在(无论是常规包还是命名空间包)
- 然后根据
package_data
配置将匹配的文件复制到对应位置 - 对于嵌套目录结构,需要保证每一级目录都被正确处理
解决方案
方法一:添加 init.py
最简单的解决方案是在每个子目录中添加 __init__.py
文件,将其转换为常规 Python 包:
some_package/
data/
__init__.py
subdir/
__init__.py
file2.txt
方法二:使用命名空间包
如果不想添加 __init__.py
文件,可以改用命名空间包:
from setuptools import setup, find_namespace_packages
setup(
packages=find_namespace_packages(),
package_data={
"some_package.data": ["*", "*/*"] # 匹配当前目录和一级子目录
}
)
方法三:通用匹配模式
对于复杂项目,可以使用更通用的匹配模式:
package_data = {pkg: ["*"] for pkg in find_namespace_packages()}
或者在 pyproject.toml 中配置:
[tool.setuptools]
package-data = {"*" = ["*"]}
环境差异说明
值得注意的是,这个问题在不同环境下表现可能不同:
- 本地虚拟环境 vs Docker 容器环境
- 不同 pip 版本(特别是 pip 22.x 与 23.x+ 之间的行为变化)
- 直接安装 vs 通过 wheel/sdist 安装
建议开发者:
- 始终使用较新的 pip 版本(23.0.0+)
- 优先通过 wheel 分发包
- 在 CI 中测试多种安装场景
最佳实践建议
- 明确声明包结构:清晰定义哪些是 Python 包,哪些是纯数据目录
- 优先使用 pyproject.toml:新的配置方式更简洁明确
- 测试多种安装方式:包括直接安装、wheel 安装和 sdist 安装
- 保持工具更新:使用较新版本的 setuptools 和 pip
- 文档记录:在项目文档中明确说明数据文件的处理方式
总结
setuptools 中数据文件的处理涉及 Python 包机制、glob 模式匹配和工具链协作等多个方面。理解这些底层原理有助于开发者正确配置项目打包方式,避免出现数据文件丢失的问题。对于嵌套目录结构,建议要么明确声明为包(添加 __init__.py
),要么使用命名空间包并配置适当的 glob 模式。同时,保持工具链更新可以避免许多兼容性问题。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
43
0