Tuist 4.39.0 版本发布:性能优化与功能增强
项目简介
Tuist 是一个用于管理 Xcode 项目的开发者工具,它通过声明式的方式简化了复杂项目的配置和维护工作。Tuist 允许开发者使用 Swift 编写项目配置,提供了强大的模块化和依赖管理能力,特别适合大型 iOS/macOS 项目开发。
版本亮点
1. 性能优化显著提升
4.39.0 版本在性能方面做了多项改进,特别是针对 tuist graph 命令进行了优化。这个命令用于生成项目依赖关系图,在大型项目中尤为重要。通过优化,开发者现在可以更快地获取项目结构信息,这对于理解复杂依赖关系非常有帮助。
2. 静态框架资源处理改进
本次更新改进了静态框架(static frameworks)中资源包的处理方式。现在,Tuist 会直接嵌入静态框架自带的资源包,而不是生成新的资源包。这一变化不仅简化了构建过程,还减少了潜在的错误来源,特别是在处理第三方静态框架时更为可靠。
3. 测试并行化配置支持
新增了 TestableTarget.parallelization 属性,允许开发者更精细地控制测试的并行执行策略。这对于大型测试套件特别有价值,开发者现在可以根据测试特性(如资源需求、执行时间等)来优化测试执行效率。
4. 包管理注册表支持
增强了对 Swift 包管理的支持,特别是添加了对包注册表(registry)的集成能力。这使得在 Tuist 项目中使用 Xcode 集成的包管理功能更加顺畅,特别是在企业环境中使用私有包注册表时。
5. 环境变量控制缓存策略
新增了 TUIST_CACHE_EXTERNAL_ONLY 环境变量,专门用于控制 tuist cache 命令的行为。开发者现在可以更灵活地指定只缓存外部依赖,这对于优化构建缓存策略特别有用。
问题修复
本次版本还包含多个重要的问题修复:
- 修复了并行运行多个
tuist dump命令时的竞态条件问题,提高了命令的可靠性 - 修正了本地 Swift 包生成项目时对 Swift 语言模式的处理问题
- 解决了单元测试目标中预构建框架的嵌入问题
- 改进了
inspect命令对外部目标隐式导入的检测准确性
开发者体验改进
除了功能上的增强,4.39.0 版本还包含多项提升开发者体验的改进:
- 更新了过时的文档说明,特别是关于使用 SPM 运行 Tuist 的部分
- 添加了对 fish shell 自动补全的文档支持
- 改进了错误和弃用警告信息,使其更加清晰明确
- 简化了项目初始化过程,现在可以识别更多配置文件
总结
Tuist 4.39.0 版本在性能、功能和稳定性方面都带来了显著提升。特别是对大型项目的支持更加完善,开发者现在可以更高效地管理复杂依赖关系、优化构建过程并控制测试执行策略。这些改进使得 Tuist 在现代化 iOS/macOS 项目开发工具链中的地位更加稳固。
对于现有用户,建议评估新版本中的性能改进和功能增强,特别是如果项目涉及大量静态框架或复杂测试套件。新用户可以借助改进的文档和更稳定的功能更快地上手 Tuist。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00