Botorch中待处理点(X_pending)在复合采集函数中的处理机制
在贝叶斯优化框架Botorch中,采集函数(Acquisition Function)的设计是一个核心组件。当我们需要构建复合采集函数时(即一个采集函数包装另一个采集函数),待处理点(X_pending)的处理机制需要特别注意,以避免重复处理导致的计算错误。
待处理点的基本概念
在贝叶斯优化过程中,"待处理点"指的是那些已经被选中但尚未完成评估的候选点。这些点需要被考虑在当前采集函数的计算中,以避免重复选择相同的或过于接近的点。
Botorch通过@concatenate_pending_points装饰器来自动处理这些待处理点。这个装饰器会在采集函数的forward方法被调用时,自动将self.X_pending与输入的X进行拼接。
复合采集函数中的问题
当构建复合采集函数时(例如PriorGuidedAcquisitionFunction包装另一个采集函数),如果被包装的采集函数也设置了X_pending,就会出现双重拼接的问题:
- 外层采集函数的
forward方法会先拼接一次X_pending - 然后在内层采集函数的
forward方法中又会拼接一次相同的X_pending
这种重复处理不仅浪费计算资源,更重要的是会导致错误的采集函数值计算,从而影响优化过程。
正确的处理方式
正确的做法应该是:
- 只在最外层的复合采集函数中设置X_pending
- 被包装的内层采集函数不应该再设置X_pending
- 外层采集函数负责在适当的时候将X_pending传递给内层计算
在Botorch的实现中,PriorGuidedAcquisitionFunction就是一个典型的例子。它接受一个基础采集函数作为参数,但只在自己这一层处理X_pending,而不会让基础采集函数也处理相同的X_pending。
实现建议
在实际实现复合采集函数时,开发者应该:
- 明确文档说明X_pending应该在哪里设置
- 在初始化时检查被包装的采集函数是否已经设置了X_pending,并给出警告
- 确保X_pending只被处理一次
- 对于需要特殊处理的情况(如SampleReducingMCAcquisitionFunction),要有明确的判断逻辑
总结
在Botorch中构建复合采集函数时,正确处理X_pending是保证优化过程正确性的关键。开发者需要理解装饰器@concatenate_pending_points的工作原理,并在设计复合采集函数时遵循"单一责任原则",确保X_pending只被最外层的采集函数处理一次。这种设计不仅提高了代码的健壮性,也使得采集函数的组合更加灵活和可预测。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00