RF-DETR模型微调及权重加载最佳实践指南
2025-07-06 03:43:33作者:冯爽妲Honey
概述
RF-DETR是基于DETR架构的目标检测模型,在自定义数据集上进行微调后能够获得优秀的检测性能。本文将详细介绍如何正确保存和加载微调后的模型权重,确保模型能够准确识别自定义类别而非原始COCO数据集类别。
模型微调后的权重文件
在RF-DETR训练过程中,系统会生成多个权重文件,包括:
- 常规检查点文件(checkpoint.pth)
- 最佳EMA检查点文件(checkpoint_best_ema.pth)
- 其他中间检查点文件
关键发现:只有特定权重文件(特别是最佳EMA检查点)才能正确保留自定义类别的检测能力,而其他权重文件可能仍保持原始COCO数据集的类别识别能力。
正确加载微调权重的方法
1. 安装最新版本RF-DETR
建议从源代码安装最新版本,以确保包含所有修复和改进:
pip install git+https://github.com/roboflow/rf-detr.git
2. 训练模型
使用以下代码启动训练过程:
from rfdetr import RFDETRBase
model = RFDETRBase()
model.train(dataset_dir=dataset.location, epochs=5, batch_size=16, grad_accum_steps=1, lr=1e-4)
3. 清理内存
训练完成后,建议执行内存清理操作:
import torch
import gc
del model
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
4. 加载最佳权重
使用最佳EMA检查点文件加载模型:
model = RFDETRBase(pretrain_weights="/path/to/checkpoint_best_ema.pth")
推理验证
加载模型后,可通过以下代码验证模型是否能够正确识别自定义类别:
import supervision as sv
from PIL import Image
# 准备测试数据集
ds = sv.DetectionDataset.from_coco(
images_directory_path="test_images",
annotations_path="test_annotations.json",
)
# 加载测试图像
image = Image.open("test_image.jpg")
# 执行推理
detections = model.predict(image, threshold=0.5)
# 可视化结果
# ... (可视化代码)
常见问题解决方案
-
模型仍识别COCO类别:确保加载的是最佳EMA检查点文件(checkpoint_best_ema.pth),而非其他检查点文件。
-
内存不足问题:训练后及时清理内存,特别是当需要在同一会话中加载多个模型时。
-
版本兼容性问题:始终使用最新版本的RF-DETR,以避免已知的权重加载问题。
结论
通过正确选择和使用最佳EMA检查点文件,RF-DETR能够完美保留在自定义数据集上的微调效果。遵循本文提供的最佳实践,可以确保模型在实际应用中表现出预期的检测性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217