TensorFlow Lite Micro 对 Raspberry Pi RP2350/RP2040 微控制器的支持现状分析
TensorFlow Lite Micro(简称TFLM)作为TensorFlow针对微控制器设备的轻量级推理框架,其在嵌入式AI领域的应用越来越广泛。近期社区对于将TFLM移植到Raspberry Pi新一代RP2350及其前代RP2040微控制器的需求日益增长,这背后反映了教育市场和创客社区对嵌入式AI解决方案的强烈需求。
RP2040是Raspberry Pi推出的首款微控制器芯片,采用双核ARM Cortex-M0+设计,主频133MHz。而新发布的RP2350作为其继任者,在架构上进行了重大升级,不仅包含ARM核心,还引入了RISC-V核心选项,为开发者提供了更灵活的硬件选择。这两款芯片因其出色的性价比和丰富的文档支持,已成为STEM教育和创客项目的热门选择。
目前TFLM对这两款平台的支持情况存在以下特点:
-
官方支持缺失:TensorFlow官方仓库尚未原生支持RP2040/RP2350平台,这在一定程度上限制了开发者使用TFLM进行AI推理的能力。
-
社区解决方案:Raspberry Pi官方维护了一个下游项目pico-tflmicro,提供了RP2040的初步支持。近期社区成员已提交了RP2350的支持补丁,但项目维护状态存疑。
-
应用潜力:结合microWakeWord等语音唤醒库,TFLM在RP2350上的应用前景广阔。这类轻量级AI模型非常适合在资源受限的微控制器上实现本地语音交互功能。
从技术实现角度看,将TFLM移植到RP2350平台面临以下挑战:
- 异构计算支持:RP2350的ARM/RISC-V混合架构需要特殊的调度策略
- 内存优化:微控制器有限的RAM资源对模型部署提出严格要求
- 性能调优:需要针对特定硬件优化算子实现
教育领域特别关注这一技术发展,因为Raspberry Pi平台在编程教学中占据重要地位。将TFLM引入教学场景,可以让学生在实践中学习嵌入式AI开发的全流程,从模型训练、量化到部署。
展望未来,随着RISC-V生态的成熟和RP2350的普及,TFLM在这类平台上的支持将变得更加重要。这不仅会推动边缘AI应用的创新,也将为嵌入式AI教育提供更多可能性。开发者社区期待看到更完善的官方支持,以及针对教学场景的优化案例和文档。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00