UnitsNet项目中的量值类型接口设计演进
在物理量计算库UnitsNet的最新开发中,团队对核心接口进行了重要重构,引入了三种新的量值类型接口:ILinearQuantity、ILogarithmicQuantity和IAffineQuantity。这一设计变革旨在更精确地表达不同物理量的数学特性,同时为.NET 7+的泛型数学特性提供更好的支持。
量值类型分类与接口设计
线性量值(ILinearQuantity)
线性量值是最常见的物理量类型,如长度、质量等。这些量支持标准的算术运算(加、减、乘、除)和比较操作。新设计的ILinearQuantity接口为这类量提供了明确的定义:
public interface ILinearQuantity<TSelf> : IQuantityInstance<TSelf>
{
static abstract TSelf Zero { get; }
bool Equals(TSelf? other, TSelf tolerance);
}
线性量值的转换遵循简单的线性关系y=ax,其中a是转换系数。这种设计使得对线性量值的集合操作(如求和、平均值计算)能够获得最佳性能。
对数量值(ILogarithmicQuantity)
对数量值(如分贝)具有独特的数学特性,其转换和运算需要在对数空间和线性空间之间转换。新接口ILogarithmicQuantity专门为此设计:
public interface ILogarithmicQuantity<TSelf> : IQuantityInstance<TSelf>
{
static abstract QuantityValue LogarithmicScalingFactor { get; }
static abstract TSelf Zero { get; }
}
对数运算引入了精度考虑,因此在相关扩展方法中提供了significantDigits参数,允许开发者根据需求平衡精度和性能。
仿射量值(IAffineQuantity)
温度是典型的仿射量值,其转换遵循y=ax+b的形式。IAffineQuantity接口专门处理这类特殊情况:
public interface IAffineQuantity<TSelf, TOffset> : IQuantityInstance<TSelf>
{
static abstract TSelf Zero { get; }
bool Equals(TSelf? other, TOffset tolerance);
}
温度计算需要特别注意偏移量处理,新设计通过TOffset类型参数明确区分了绝对温度和温度变化量。
扩展方法优化
配合新接口,项目引入了一系列扩展方法,显著提升了集合操作的性能和可用性:
- 线性量值的Sum和Average操作直接累加数值,避免重复的单位转换
- 对数量值操作提供了算术平均和几何平均两种计算方式
- 温度特有的平均值计算确保正确处理Kelvin、Celsius等温标转换
这些扩展不仅提高了性能,还通过更严格的类型约束避免了不当的量值混合运算。
设计考量与技术挑战
在实现过程中,团队面临了几个关键技术决策点:
- 接口命名从最初的IVectorQuantity改为更准确的ILinearQuantity
- 对数缩放因子的存储位置权衡(实例属性 vs 静态属性 vs QuantityInfo)
- 扩展方法的智能感知问题(与ReSharper的兼容性)
- 保持与旧版本的兼容性同时利用.NET 7+的新特性
特别是Equals方法的改造,从接口方法迁移为扩展方法,既保持了功能又简化了接口设计。虽然这导致了在某些IDE中会出现不相关的智能感知建议,但团队认为这是可接受的过渡期问题。
未来方向
随着.NET 10的发布预期,团队计划进一步利用语言特性改进API设计。例如,将GetDefaultAbbreviation等方法也改造为扩展方法,保持接口精简的同时提供完整功能。
这一系列接口重构为UnitsNet奠定了更坚实的数学基础,使得不同类型的物理量能够以最合适的方式表达其本质特性,同时为开发者提供一致且类型安全的操作体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00