TorchMetrics中MulticlassStatScores的samplewise模式使用指南
2025-07-03 21:00:18作者:裘旻烁
概述
在使用TorchMetrics进行多分类任务评估时,MulticlassStatScores是一个常用的指标计算类。当开发者尝试使用multidim_average='samplewise'参数时,可能会遇到维度不匹配的错误。本文将深入分析这一问题,并提供正确的使用方法。
问题现象
在TorchMetrics 1.6.1版本中,当开发者按照以下方式使用MulticlassStatScores时:
top_k = 1
average = 'micro'
multidim_average = 'samplewise'
num_classes = 3
target = torch.tensor([0, 1])
preds = torch.tensor([[0.9, 0.1, 0.0], [0.9, 0.1, 0.0]])
metric = MulticlassStatScores(top_k=top_k, average=average,
multidim_average=multidim_average,
num_classes=num_classes)
metric.update(preds, target)
系统会抛出ValueError错误,提示当multidim_average设置为samplewise时,preds张量至少需要是3D的。
原因分析
这个错误源于对samplewise模式下输入张量维度要求的误解。在TorchMetrics的设计中:
-
samplewise模式:要求输入张量必须包含明确的样本维度,这意味着:
- 对于预测值(preds):需要是3D张量,形状为(num_samples, num_classes, ...)
- 对于目标值(target):需要是2D张量,形状为(num_samples, ...)
-
默认模式:则接受更简单的2D/1D输入
正确使用方法
要解决这个问题,我们需要确保输入张量具有正确的维度:
# 原始输入
target = torch.tensor([0, 1]) # 形状: [2]
preds = torch.tensor([[0.9, 0.1, 0.0], [0.9, 0.1, 0.0]]) # 形状: [2, 3]
# 添加必要的维度
target = target.unsqueeze(-1) # 形状变为: [2, 1]
preds = preds.unsqueeze(-1) # 形状变为: [2, 3, 1]
# 现在可以正确计算
metric = MulticlassStatScores(top_k=1, average='micro',
multidim_average='samplewise',
num_classes=3)
metric.update(preds, target)
print(metric.compute())
实际应用建议
- 维度检查:在使用samplewise模式前,务必检查输入张量的形状
- 批量处理:在实际应用中,通常会处理批量数据,这时输入已经是正确的3D/2D形状
- 文档参考:TorchMetrics文档明确指出samplewise模式需要额外的样本维度
总结
理解TorchMetrics中不同聚合模式对输入维度的要求是正确使用该库的关键。对于MulticlassStatScores的samplewise模式,开发者需要确保输入张量具有足够的维度来表示样本信息。通过适当的维度调整,可以避免这类错误并获得准确的评估结果。
在实际开发中,建议在数据处理流程的早期就考虑这些维度要求,以确保整个评估流程的顺畅运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210