TorchMetrics中MulticlassStatScores的samplewise模式使用指南
2025-07-03 17:27:18作者:裘旻烁
概述
在使用TorchMetrics进行多分类任务评估时,MulticlassStatScores是一个常用的指标计算类。当开发者尝试使用multidim_average='samplewise'
参数时,可能会遇到维度不匹配的错误。本文将深入分析这一问题,并提供正确的使用方法。
问题现象
在TorchMetrics 1.6.1版本中,当开发者按照以下方式使用MulticlassStatScores时:
top_k = 1
average = 'micro'
multidim_average = 'samplewise'
num_classes = 3
target = torch.tensor([0, 1])
preds = torch.tensor([[0.9, 0.1, 0.0], [0.9, 0.1, 0.0]])
metric = MulticlassStatScores(top_k=top_k, average=average,
multidim_average=multidim_average,
num_classes=num_classes)
metric.update(preds, target)
系统会抛出ValueError
错误,提示当multidim_average
设置为samplewise
时,preds
张量至少需要是3D的。
原因分析
这个错误源于对samplewise模式下输入张量维度要求的误解。在TorchMetrics的设计中:
-
samplewise模式:要求输入张量必须包含明确的样本维度,这意味着:
- 对于预测值(preds):需要是3D张量,形状为(num_samples, num_classes, ...)
- 对于目标值(target):需要是2D张量,形状为(num_samples, ...)
-
默认模式:则接受更简单的2D/1D输入
正确使用方法
要解决这个问题,我们需要确保输入张量具有正确的维度:
# 原始输入
target = torch.tensor([0, 1]) # 形状: [2]
preds = torch.tensor([[0.9, 0.1, 0.0], [0.9, 0.1, 0.0]]) # 形状: [2, 3]
# 添加必要的维度
target = target.unsqueeze(-1) # 形状变为: [2, 1]
preds = preds.unsqueeze(-1) # 形状变为: [2, 3, 1]
# 现在可以正确计算
metric = MulticlassStatScores(top_k=1, average='micro',
multidim_average='samplewise',
num_classes=3)
metric.update(preds, target)
print(metric.compute())
实际应用建议
- 维度检查:在使用samplewise模式前,务必检查输入张量的形状
- 批量处理:在实际应用中,通常会处理批量数据,这时输入已经是正确的3D/2D形状
- 文档参考:TorchMetrics文档明确指出samplewise模式需要额外的样本维度
总结
理解TorchMetrics中不同聚合模式对输入维度的要求是正确使用该库的关键。对于MulticlassStatScores的samplewise模式,开发者需要确保输入张量具有足够的维度来表示样本信息。通过适当的维度调整,可以避免这类错误并获得准确的评估结果。
在实际开发中,建议在数据处理流程的早期就考虑这些维度要求,以确保整个评估流程的顺畅运行。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133