VLM-R1项目中GRPO算法的实现原理与优化思路
2025-06-11 19:28:59作者:谭伦延
GRPO算法概述
GRPO(Generalized Reinforcement Policy Optimization)是一种强化学习优化算法,它在策略优化过程中引入了广义优势估计和正则化项。该算法在VLM-R1项目中得到了实际应用,特别是在语言模型微调场景下表现出色。
标准GRPO算法流程
标准GRPO算法的训练过程包含以下几个关键步骤:
-
参数定义阶段:
- 设定生成样本数量G
- 设定参考策略更新频率k
- 初始化当前策略π和参考策略π_ref
-
训练循环:
- 从当前策略π中采样G个输出
- 计算每个输出的奖励值
- 计算优势值A
- 通过最大化GRPO目标函数更新策略π
- 每k步更新一次参考策略π_ref
VLM-R1中的实现优化
在VLM-R1项目的实际实现中,对标准GRPO算法进行了以下优化:
-
单步更新策略:
- 将更新频率k设为1
- 每个训练步骤都更新参考策略π_ref
- 这使得π_ref始终等于上一步的策略π
-
目标函数简化:
- 由于π_ref = π_old,比值项简化为1
- 原始GRPO目标函数可简化为更紧凑的形式
代码实现解析
项目中的关键实现部分涉及对数概率的计算:
per_token_logps = ... # 计算每个token的对数概率
torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
这段代码实现了以下数学表达:
per_token_logps表示当前策略下token的对数概率- 通过减去detach()后的值,实现了比值计算
- 最终与优势值相乘得到目标函数值
技术优势分析
这种实现方式具有以下优势:
- 计算效率高:避免了复杂的比值计算
- 数值稳定性好:通过指数和对数运算的组合保持数值稳定
- 梯度传播合理:确保梯度仅通过当前策略传播
- 实现简洁:代码量少但功能完整
实际应用建议
在实际应用中,需要注意:
- 优势估计的准确性直接影响算法效果
- 学习率需要谨慎调整以避免训练不稳定
- 批量大小会影响策略更新的平滑程度
- 正则化项的权重需要根据具体任务调整
总结
VLM-R1项目中的GRPO实现通过巧妙的数学变换和工程优化,在保持算法理论完备性的同时,大幅提升了实际训练效率和稳定性。这种实现方式为大规模语言模型的强化学习微调提供了可靠的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218