nnUNet在2D心脏分割任务中损失值NaN问题的分析与解决
2025-06-02 12:53:44作者:何举烈Damon
问题背景
在使用nnUNet框架进行心脏结构(左心室LV、心肌MYO和右心室RV)的2D分割任务时,开发者遇到了训练过程中损失值变为NaN(非数字)的问题。具体表现为训练损失和验证损失在几个epoch后突然变为NaN,同时Dice得分始终为0。值得注意的是,同样的数据在3D分割模式下表现正常。
现象分析
从训练日志可以看出:
- 初始几个epoch损失值尚属正常范围(如0.36、0.12等)
- 随着训练进行,损失值开始波动增大(如1.27、1.32等)
- 约第6个epoch后,损失值突然变为NaN
- Dice得分全程保持为0,说明模型未能学习到有效的分割特征
可能原因
1. 数据预处理问题
2D分割与3D分割对数据预处理的要求不同。可能存在的问题包括:
- 切片方向选择不当,导致解剖结构连续性被破坏
- 归一化方式不适合2D数据分布
- 2D切片中目标区域占比过小,导致类别极度不平衡
2. 训练策略差异
2D训练通常需要:
- 更小的初始学习率(相比3D)
- 不同的数据增强策略
- 特定的采样策略(如对包含目标的切片进行过采样)
3. 损失函数选择
默认的Dice+交叉熵损失在某些情况下可能导致数值不稳定,特别是:
- 当预测结果与真实标签完全不匹配时
- 存在极端类别不平衡时
解决方案
1. 使用专用训练器
建议尝试nnUNetTrainerDiceCELoss_noSmooth
训练器,该版本:
- 移除了Dice损失中的平滑项
- 对极端情况有更好的数值稳定性
2. 调整训练参数
- 减小初始学习率(如从0.01降至0.001)
- 启用过采样(Oversampling)策略
- 减小patch size,特别是当目标区域较小时
3. 数据层面优化
- 检查2D切片方向是否合理(如选择短轴视图而非长轴视图)
- 验证标签在2D切片中的分布情况
- 考虑使用特定于心脏分割的数据增强策略
实施建议
- 首先确保使用最新版本的nnUNet和相关依赖
- 尝试最简单的配置(小学习率+noSmooth训练器)
- 逐步添加复杂策略(如过采样)观察效果
- 监控中间预测结果,确认模型是否在学习有意义的特征
总结
2D医学图像分割与3D分割在数据分布和训练动态上存在显著差异。针对心脏结构分割这一特定任务,需要特别注意类别平衡、损失函数选择和训练策略调整。通过合理配置训练器和优化参数,通常可以解决损失值NaN的问题,获得稳定的训练过程。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
968
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17