nnUNet在2D心脏分割任务中损失值NaN问题的分析与解决
2025-06-02 10:49:42作者:何举烈Damon
问题背景
在使用nnUNet框架进行心脏结构(左心室LV、心肌MYO和右心室RV)的2D分割任务时,开发者遇到了训练过程中损失值变为NaN(非数字)的问题。具体表现为训练损失和验证损失在几个epoch后突然变为NaN,同时Dice得分始终为0。值得注意的是,同样的数据在3D分割模式下表现正常。
现象分析
从训练日志可以看出:
- 初始几个epoch损失值尚属正常范围(如0.36、0.12等)
- 随着训练进行,损失值开始波动增大(如1.27、1.32等)
- 约第6个epoch后,损失值突然变为NaN
- Dice得分全程保持为0,说明模型未能学习到有效的分割特征
可能原因
1. 数据预处理问题
2D分割与3D分割对数据预处理的要求不同。可能存在的问题包括:
- 切片方向选择不当,导致解剖结构连续性被破坏
- 归一化方式不适合2D数据分布
- 2D切片中目标区域占比过小,导致类别极度不平衡
2. 训练策略差异
2D训练通常需要:
- 更小的初始学习率(相比3D)
- 不同的数据增强策略
- 特定的采样策略(如对包含目标的切片进行过采样)
3. 损失函数选择
默认的Dice+交叉熵损失在某些情况下可能导致数值不稳定,特别是:
- 当预测结果与真实标签完全不匹配时
- 存在极端类别不平衡时
解决方案
1. 使用专用训练器
建议尝试nnUNetTrainerDiceCELoss_noSmooth训练器,该版本:
- 移除了Dice损失中的平滑项
- 对极端情况有更好的数值稳定性
2. 调整训练参数
- 减小初始学习率(如从0.01降至0.001)
- 启用过采样(Oversampling)策略
- 减小patch size,特别是当目标区域较小时
3. 数据层面优化
- 检查2D切片方向是否合理(如选择短轴视图而非长轴视图)
- 验证标签在2D切片中的分布情况
- 考虑使用特定于心脏分割的数据增强策略
实施建议
- 首先确保使用最新版本的nnUNet和相关依赖
- 尝试最简单的配置(小学习率+noSmooth训练器)
- 逐步添加复杂策略(如过采样)观察效果
- 监控中间预测结果,确认模型是否在学习有意义的特征
总结
2D医学图像分割与3D分割在数据分布和训练动态上存在显著差异。针对心脏结构分割这一特定任务,需要特别注意类别平衡、损失函数选择和训练策略调整。通过合理配置训练器和优化参数,通常可以解决损失值NaN的问题,获得稳定的训练过程。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1