在SUMO中自定义出租车接送乘客的行驶路线
2025-06-29 11:22:58作者:鲍丁臣Ursa
背景介绍
SUMO(Simulation of Urban MObility)是一款开源的交通仿真软件,广泛应用于城市交通规划和研究。在SUMO中,出租车服务是一个重要的功能模块,允许用户模拟乘客呼叫出租车并完成运输的过程。默认情况下,SUMO会自动为出租车计算最短路径来完成接送任务,但在实际应用中,我们可能需要自定义出租车的行驶路线。
问题分析
当使用redispatchTaxi()函数调度出租车时,SUMO会默认选择最短路径来完成接送任务。然而,在某些场景下,用户可能希望出租车按照特定路线行驶,而非系统计算的最短路径。例如:
- 某些路段存在临时道路施工
- 需要优先选择特定等级的道路
- 需要避开拥堵区域
- 需要测试特定路线的性能
解决方案
方法一:修改路段权重
通过traci.vehicle.setAdaptedTraveltime函数可以动态调整路段的权重,从而影响路径规划的结果。具体实现步骤如下:
- 首先调用
redispatchTaxi()函数分配出租车任务 - 然后使用
setAdaptedTraveltime为特定路段设置较低的权重值,使其成为优先选择 - 最后调用
rerouteTraveltime函数让出租车根据新的权重重新规划路线
这种方法通过间接方式影响路径选择,保持了系统的灵活性,同时实现了自定义路线的目的。
方法二:设置车辆权限
如果需要完全禁止出租车使用某些路段,可以通过修改路段的权限设置来实现:
- 使用
traci.lane.setAllowed函数限制特定车辆类型在某些车道的通行权限 - 这样在路径规划时,系统会自动避开这些受限路段
这种方法适用于需要长期限制某些路段通行的情况。
注意事项
- 直接使用
setRoute函数会清除出租车的接送任务,因此不推荐使用 - 修改路段权重时,需要确保新的路线仍然是可达的
- 权重值的设置需要合理,过大的差异可能导致不自然的路径选择
- 在复杂的路网中,可能需要多次调整才能得到理想的路线
实际应用示例
假设我们需要让出租车按照"edge1→edge2→edge3→edge4"的路线接送乘客,而非系统默认的最短路径,可以按照以下步骤操作:
- 首先调度出租车:
traci.vehicle.redispatchTaxi("taxi1") - 为期望路径上的路段设置较低权重:
traci.vehicle.setAdaptedTraveltime("taxi1", "edge1", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge2", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge3", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge4", 10) - 为不希望使用的路段设置较高权重
- 触发重新路由:
traci.vehicle.rerouteTraveltime("taxi1")
通过这种方法,出租车将更倾向于选择我们指定的路线来完成接送任务。
总结
在SUMO仿真中自定义出租车路线是一个常见的需求。通过合理使用SUMO提供的TraCI接口,特别是setAdaptedTraveltime和rerouteTraveltime函数,我们可以灵活地控制出租车的行驶路线,满足各种仿真场景的需求。这种方法既保持了系统的自动路径规划功能,又提供了足够的定制能力,是SUMO交通仿真中一个实用的技巧。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19