在SUMO中自定义出租车接送乘客的行驶路线
2025-06-29 03:39:39作者:鲍丁臣Ursa
背景介绍
SUMO(Simulation of Urban MObility)是一款开源的交通仿真软件,广泛应用于城市交通规划和研究。在SUMO中,出租车服务是一个重要的功能模块,允许用户模拟乘客呼叫出租车并完成运输的过程。默认情况下,SUMO会自动为出租车计算最短路径来完成接送任务,但在实际应用中,我们可能需要自定义出租车的行驶路线。
问题分析
当使用redispatchTaxi()函数调度出租车时,SUMO会默认选择最短路径来完成接送任务。然而,在某些场景下,用户可能希望出租车按照特定路线行驶,而非系统计算的最短路径。例如:
- 某些路段存在临时道路施工
- 需要优先选择特定等级的道路
- 需要避开拥堵区域
- 需要测试特定路线的性能
解决方案
方法一:修改路段权重
通过traci.vehicle.setAdaptedTraveltime函数可以动态调整路段的权重,从而影响路径规划的结果。具体实现步骤如下:
- 首先调用
redispatchTaxi()函数分配出租车任务 - 然后使用
setAdaptedTraveltime为特定路段设置较低的权重值,使其成为优先选择 - 最后调用
rerouteTraveltime函数让出租车根据新的权重重新规划路线
这种方法通过间接方式影响路径选择,保持了系统的灵活性,同时实现了自定义路线的目的。
方法二:设置车辆权限
如果需要完全禁止出租车使用某些路段,可以通过修改路段的权限设置来实现:
- 使用
traci.lane.setAllowed函数限制特定车辆类型在某些车道的通行权限 - 这样在路径规划时,系统会自动避开这些受限路段
这种方法适用于需要长期限制某些路段通行的情况。
注意事项
- 直接使用
setRoute函数会清除出租车的接送任务,因此不推荐使用 - 修改路段权重时,需要确保新的路线仍然是可达的
- 权重值的设置需要合理,过大的差异可能导致不自然的路径选择
- 在复杂的路网中,可能需要多次调整才能得到理想的路线
实际应用示例
假设我们需要让出租车按照"edge1→edge2→edge3→edge4"的路线接送乘客,而非系统默认的最短路径,可以按照以下步骤操作:
- 首先调度出租车:
traci.vehicle.redispatchTaxi("taxi1") - 为期望路径上的路段设置较低权重:
traci.vehicle.setAdaptedTraveltime("taxi1", "edge1", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge2", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge3", 10) traci.vehicle.setAdaptedTraveltime("taxi1", "edge4", 10) - 为不希望使用的路段设置较高权重
- 触发重新路由:
traci.vehicle.rerouteTraveltime("taxi1")
通过这种方法,出租车将更倾向于选择我们指定的路线来完成接送任务。
总结
在SUMO仿真中自定义出租车路线是一个常见的需求。通过合理使用SUMO提供的TraCI接口,特别是setAdaptedTraveltime和rerouteTraveltime函数,我们可以灵活地控制出租车的行驶路线,满足各种仿真场景的需求。这种方法既保持了系统的自动路径规划功能,又提供了足够的定制能力,是SUMO交通仿真中一个实用的技巧。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30