Modelscope/SWIFT框架中多卡训练时的临时文件存储问题分析与解决方案
问题背景
在使用Modelscope/SWIFT框架进行多卡深度学习训练时,用户发现了一个显著的存储空间占用问题。当使用4张GPU卡进行训练时,系统会在缓存目录(~/.cache/modelscope/hub/tmp/)下生成与GPU卡数相同数量的临时文件夹,每个文件夹大小约为训练数据集的两倍。对于100GB的训练数据,4卡训练将导致800GB的临时存储占用,这对存储资源造成了巨大压力。
技术原理分析
这种现象源于深度学习框架在多进程数据加载时的设计机制。当使用多卡并行训练时,每个GPU进程都需要独立访问训练数据。为了避免数据竞争和提高读取效率,框架会为每个进程创建独立的数据缓存副本。
具体来说,这种设计涉及以下几个技术层面:
-
数据并行架构:在多卡训练中,每个GPU卡对应一个独立的进程,需要完整的数据访问能力
-
缓存优化机制:为了提高数据加载速度,框架会将预处理后的数据缓存到本地
-
进程隔离需求:为避免进程间干扰,每个进程维护独立的缓存空间
问题影响
这种设计虽然保证了训练过程的稳定性和性能,但也带来了明显的副作用:
-
存储空间呈线性增长:临时存储占用 = 数据集大小 × 副本数 × GPU卡数
-
对于大规模数据集训练,可能直接耗尽系统存储空间
-
训练结束后临时文件才能释放,期间持续占用空间
解决方案
项目团队已在主分支(main)中修复了这一问题。新版本通过以下方式优化了存储使用:
-
共享缓存机制:多个进程共享同一份缓存数据,减少冗余存储
-
内存映射优化:使用更高效的文件访问方式,降低对物理存储的需求
-
智能清理策略:自动管理临时文件生命周期,及时释放不再需要的资源
最佳实践建议
对于仍在使用旧版本的用户,可以采取以下临时措施:
-
定期清理缓存目录中的临时文件
-
考虑使用符号链接将缓存目录指向更大容量的存储设备
-
在训练配置中适当减少数据预处理复杂度
-
监控系统存储使用情况,避免因空间不足导致训练中断
总结
Modelscope/SWIFT框架的这一优化体现了深度学习工具链对实际应用场景的持续改进。随着模型规模和数据集大小的不断增长,高效的资源管理变得愈发重要。开发者应当关注框架更新,及时获取性能优化和资源管理方面的改进。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00