Apollo Client v3.13+ 版本中 jest 假定时器与 useMutation 的兼容性问题分析
问题背景
在 Apollo Client 3.13 及以上版本中,开发者在使用 jest 的假定时器(fakeTimers)进行测试时,会遇到 React 的 act 警告。这个问题在之前的版本中并不存在,主要出现在包含 useMutation 钩子的测试用例中。
技术细节
这个问题的根源在于 Apollo Client 3.13 版本中对 mutation 处理逻辑的优化。具体来说,在 PR #12174 中,开发团队将 mutation 的 Promise 处理方式从链式调用改为直接传递回调函数:
旧版本代码:
return client
.mutate(...)
.then(onResolvedCb)
.catch(onErrorCb)
新版本代码:
return client
.mutate(...)
.then(onResolvedCb, onErrorCb)
这种修改减少了 Promise 解析所需的 tick 时间,使得 mutation 完成回调的执行时机发生了变化。在测试环境中,特别是当使用 jest 的假定时器时,这种微小的时序变化会导致 React 的 act 警告出现。
解决方案
对于遇到此问题的开发者,有以下几种解决方案:
- 使用 mutation 的 onCompleted 回调: 将需要在 mutation 完成后执行的操作移到 onCompleted 回调中,而不是在 await 之后执行。
someMutation({
onCompleted: () => showSnackbar()
});
-
调整测试时序: 在测试中适当添加 await 语句,确保所有异步操作完成后再进行断言。
-
保持测试环境一致性: 理解测试环境与实际运行环境的差异,避免对异步操作的具体时序做出过于严格的假设。
最佳实践建议
-
避免依赖具体实现细节: 测试不应该依赖于 mutation 完成的确切时间,因为在实际应用中网络请求的耗时是不确定的。
-
优先使用官方推荐模式: 对于需要在 mutation 完成后执行的操作,优先考虑使用 onCompleted/onError 回调,而不是 await 模式。
-
理解测试工具限制: 在使用假定时器进行测试时,要意识到它可能无法完全模拟真实环境中的异步行为。
总结
Apollo Client 3.13 版本的这一变更虽然带来了性能上的优化,但也影响了测试环境中的行为。开发者需要理解这种变化的本质,并相应调整自己的测试策略。通过采用更健壮的测试模式和回调方式,可以确保应用在各种环境下都能稳定运行。
这个问题也提醒我们,在编写测试时应该关注行为而非实现,这样才能构建出更加健壮和可维护的测试套件。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









