NSwag项目中System.Text.Json序列化设置未正确应用的解决方案
背景介绍
在.NET生态系统中,NSwag是一个流行的工具,用于生成Swagger/OpenAPI文档和客户端代码。当开发者使用Minimal API(不依赖MVC框架)构建应用程序时,可能会遇到System.Text.Json序列化设置未被NSwag正确识别的问题。
问题现象
开发者在使用纯Minimal API项目时发现,虽然应用程序内部配置了camelCase的JSON序列化策略,但NSwag生成的OpenAPI/Swagger文档仍然输出PascalCase格式的属性名。这与应用程序的实际行为不符,可能导致前端客户端与后端API之间的数据格式不一致。
根本原因
NSwag默认通过MvcOptions来获取JSON序列化设置。在纯Minimal API项目中,由于没有使用MVC框架,这些设置不会被自动配置,导致NSwag无法获取到应用程序的System.Text.Json配置。
解决方案
1. 显式配置MvcOptions(传统方案)
开发者可以手动添加MvcOptions配置,确保NSwag能够获取到正确的序列化设置:
builder.Services.Configure<MvcOptions>(options =>
{
options.OutputFormatters.Add(
new SystemTextJsonOutputFormatter(
System.Text.Json.JsonSerializerOptions.Default));
});
这种方法虽然有效,但引入了MVC相关的依赖,对于纯Minimal API项目来说不够优雅。
2. 配置HttpJsonOptions(推荐方案)
更现代的解决方案是直接配置Minimal API的JSON选项:
builder.Services.ConfigureHttpJsonOptions(options =>
{
options.SerializerOptions.PropertyNamingPolicy = JsonNamingPolicy.CamelCase;
});
这种方法更符合Minimal API的设计理念,且能确保NSwag正确识别序列化设置。
3. 客户端自定义(前端解决方案)
对于生成的客户端代码,可以通过创建部分类来覆盖默认的JSON设置:
public partial class Client
{
static partial void UpdateJsonSerializerSettings(JsonSerializerOptions settings)
{
settings.PropertyNamingPolicy = JsonNamingPolicy.CamelCase;
}
}
这种方法适用于需要在前端代码中强制特定命名策略的场景。
最新进展
在NSwag的v14.0.7版本中,这个问题已得到修复。开发者可以直接使用ConfigureHttpJsonOptions来配置JSON序列化行为,而无需额外配置MvcOptions。
最佳实践建议
- 对于新项目,建议使用最新版本的NSwag(v14.0.7或更高)
- 优先使用ConfigureHttpJsonOptions来配置JSON序列化
- 如果必须使用旧版本,可以采用显式配置MvcOptions的临时方案
- 定期检查NSwag的更新日志,获取最新的功能改进和bug修复
通过理解这些解决方案,开发者可以确保NSwag生成的API文档与实际API行为保持一致,避免前后端数据格式不一致的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00