HardCIDR 使用教程
1. 项目介绍
HardCIDR 是一个用于在渗透测试的情报收集阶段发现目标组织拥有的网络块或范围(以 CIDR 表示法表示)的 Linux Bash 脚本。该脚本不仅在 Linux 上运行,还可以在 macOS 上运行,但在其他发行版上的兼容性可能会有所不同。
HardCIDR 通过查询五个区域互联网注册管理机构(RIRs)来获取信息,这些机构包括:
- ARIN(北美)
 - RIPE(欧洲/亚洲/中东)
 - APNIC(亚太地区)
 - LACNIC(拉丁美洲)
 - AfriNIC(非洲)
 
除了网络块和 IP 地址,HardCIDR 还关注自治系统编号(ASNs),这些编号用于边界网关协议(BGP)中,以唯一标识互联网上的每个网络。
2. 项目快速启动
2.1 安装依赖
HardCIDR 需要 ipcalc 工具来处理某些查询。如果系统中没有安装 ipcalc,脚本会自动安装它。
2.2 下载 HardCIDR
首先,克隆 HardCIDR 仓库到本地:
git clone https://github.com/trustedsec/hardcidr.git
cd hardcidr
2.3 运行 HardCIDR
直接运行脚本,不带任何选项时,它会查询 ARIN 和一个随机的 BGP 路由服务器:
./hardcidr.sh
2.4 使用选项
HardCIDR 提供了多个选项,可以通过 -h 查看帮助信息:
./hardcidr.sh -h
例如,使用 -r 选项更新 LACNIC 数据文件:
./hardcidr.sh -r
3. 应用案例和最佳实践
3.1 渗透测试中的情报收集
在渗透测试的情报收集阶段,HardCIDR 可以帮助测试人员快速获取目标组织的网络块和 ASN 信息,从而为后续的渗透测试提供重要数据。
3.2 网络资产管理
HardCIDR 可以用于网络资产管理,帮助组织了解其拥有的网络资源,并确保这些资源的正确管理和分配。
3.3 安全监控
通过 HardCIDR 获取的网络块信息,可以用于配置安全监控系统,以便更好地检测和响应潜在的安全威胁。
4. 典型生态项目
4.1 Nmap
Nmap 是一个网络扫描工具,可以与 HardCIDR 结合使用,通过获取的 CIDR 范围进行更精确的网络扫描。
4.2 Metasploit
Metasploit 是一个渗透测试框架,可以利用 HardCIDR 获取的网络信息来指导攻击测试,提高渗透测试的效率和准确性。
4.3 Shodan
Shodan 是一个网络搜索引擎,可以与 HardCIDR 结合使用,通过获取的网络块信息来搜索特定组织暴露在互联网上的设备和服务。
通过以上模块的介绍,您可以快速上手 HardCIDR,并了解其在实际应用中的价值和最佳实践。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00