linkedIn_auto_jobs_applier_with_AI_fast 的项目扩展与二次开发
2025-06-25 08:24:23作者:咎竹峻Karen
项目的基础介绍
linkedIn_auto_jobs_applier_with_AI_fast 是一个开源项目,旨在通过自动化和人工智能技术,帮助用户在 LinkedIn 上高效地搜索和申请工作。该工具能够节省用户大量时间,自动完成职位搜索、申请表单填写以及个性化简历生成等工作,大大提高了求职效率。
项目的核心功能
- 智能职位搜索自动化:根据用户设置的搜索条件,自动搜索适合的职位。
- 快速申请提交:利用 LinkedIn 的“一键申请”功能,快速提交申请。
- AI 驱动的个性化:根据公司文化和职位要求,动态生成回应,优化申请材料的相关性。
- 职位申请跟踪:详细记录申请进度,帮助用户管理求职活动。
项目使用了哪些框架或库?
该项目主要使用以下框架和库:
- Python:作为主要的编程语言。
- Selenium:用于网页自动化操作,模拟用户行为。
- OpenAI GPT:用于生成个性化的回应和优化文本。
项目的代码目录及介绍
项目的代码目录如下:
- data_folder:包含示例数据和实际运行时生成的数据。
- resume_template:简历模板文件。
- .gitignore:配置 Git 忽略的文件列表。
- LICENSE:项目许可证文件。
- README.md:项目说明文件。
- gpt.py:与 OpenAI GPT 交互的代码。
- job.py:处理职位信息的代码。
- linkedIn_authenticator.py:LinkedIn 登录认证相关代码。
- linkedIn_bot_facade.py:LinkedIn 机器人操作的封装。
- linkedIn_easy_applier.py:实现“一键申请”功能的代码。
- linkedIn_job_manager.py:职位管理相关代码。
- main.py:程序的主入口。
- requirements.txt:项目依赖的 Python 包列表。
- resume.py:简历生成相关代码。
- strings.py:字符串操作相关的代码。
- utils.py:通用工具函数。
对项目进行扩展或者二次开发的方向
- 增加更多的个性化选项:允许用户自定义更多的申请材料,如自我介绍、工作经历描述等。
- 集成其他招聘平台:除了 LinkedIn,还可以扩展到其他招聘网站,如 Indeed、Glassdoor 等。
- 改进职位匹配算法:通过机器学习技术,提高职位推荐的准确性和相关性。
- 增加用户反馈机制:允许用户对申请结果进行反馈,以优化申请流程。
- 多语言支持:为不同国家和地区的用户提供本地化支持。
- 安全性增强:加强用户数据的安全保护,确保用户信息不被泄露。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136