RCG PyTorch 实施指南
2024-09-28 17:40:50作者:咎岭娴Homer
1. 项目目录结构及介绍
RCG(Return of Unconditional Generation)是基于PyTorch实现的一个自监督图像生成框架。以下是其基本的目录结构及其简要说明:
rcg
├── config # 配置文件夹,存放各种实验设置的yaml文件
│ └── rdm # RDM模型相关配置
│ └── mage # MAGE模型相关配置
│ └── adm # ADM模型相关配置
│ └── dit # DiT模型相关配置
├── figures # 可能包含实验结果或模型架构图等
├── pixel_generator # 包含像素生成器相关的代码
│ ├── <...>.py # 模型定义文件
├── pretrained_enc # 预训练编码器权重存储位置
├── rdm # RDM模型相关源码
├── util # 辅助函数库
├── .gitignore # Git忽略文件
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── engine_adm.py # ADM引擎文件
├── engine_dit.py # DiT引擎文件
├── engine_ldm.py # LDM引擎文件
├── engine_mage.py # MAGE引擎文件
├── engine_rdm.py # RDM引擎文件
├── environment.yaml # Conda环境配置文件
├── imagenet_clstolabel.py # 处理ImageNet类别标签的脚本
├── main_adm.py # 启动ADM模型训练的主程序
├── main_dit.py # 启动DiT模型训练的主程序
├── main_ldm.py # 启动LDModel训练的主程序
├── main_mage.py # 启动MAGE模型训练的主程序
├── main_rdm.py # 启动RDM模型训练的主程序
├── prepare_imgnet_val.py # 准备ImageNet验证集用于FID评估的脚本
├── setup.py # 项目安装脚本
└── viz_rcg.ipynb # 可视化生成结果的Jupyter Notebook
2. 项目的启动文件介绍
项目的核心在于几个main_*.py文件,它们分别对应不同的模型训练入口:
main_rdm.py: 用于启动Moco v3 ViT-B/RDM模型的训练。main_mage.py: 用于训练MAGE模型,该模型可以基于Moco v3 ViT-B或ViT-L的表示进行条件生成。main_dit.py,main_adm.py: 分别用于DiT和ADM模型的训练,这些模型同样依赖于特定的编码器和预先训练好的表示。
启动文件通常需要通过命令行参数指定配置文件路径、数据路径、输出目录等关键信息,并可能利用分布式计算资源来加速训练过程。
3. 项目的配置文件介绍
配置文件位于config目录下,每个.yaml文件代表一个具体模型的训练配置。以其中一个为例,如config/rdm/mocov3vitb_simplemlp_l12_w1536.yaml,它可能包含以下几个关键部分:
- 模型参数: 如输入大小(
input_size)、批量大小(batch_size)、学习率(blr)等。 - 训练设置: 包括总epoch数(
epochs)、权重衰减(weight_decay)、是否从断点恢复训练(resume)等。 - 模型组件路径: 预训练编码器(
pretrained_enc_path)、扩散模型配置(pretrained_rdm_cfg)和检查点路径(pretrained_rdm_ckpt)等。 - 其他特定设置: 如模型特定的超参数,以及如何使用预训练模型的细节。
配置文件是控制实验细节的关键,用户可以通过修改这些配置来适应自己的需求,比如改变模型训练的持续时间、使用的GPU数量等。为了运行项目,用户需仔细阅读并调整相应的配置文件以匹配他们的硬件和研究目标。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
884
590
暂无简介
Dart
769
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246