RCG PyTorch 实施指南
2024-09-28 17:40:50作者:咎岭娴Homer
1. 项目目录结构及介绍
RCG(Return of Unconditional Generation)是基于PyTorch实现的一个自监督图像生成框架。以下是其基本的目录结构及其简要说明:
rcg
├── config # 配置文件夹,存放各种实验设置的yaml文件
│ └── rdm # RDM模型相关配置
│ └── mage # MAGE模型相关配置
│ └── adm # ADM模型相关配置
│ └── dit # DiT模型相关配置
├── figures # 可能包含实验结果或模型架构图等
├── pixel_generator # 包含像素生成器相关的代码
│ ├── <...>.py # 模型定义文件
├── pretrained_enc # 预训练编码器权重存储位置
├── rdm # RDM模型相关源码
├── util # 辅助函数库
├── .gitignore # Git忽略文件
├── LICENSE # 许可证文件
├── README.md # 项目说明文档
├── engine_adm.py # ADM引擎文件
├── engine_dit.py # DiT引擎文件
├── engine_ldm.py # LDM引擎文件
├── engine_mage.py # MAGE引擎文件
├── engine_rdm.py # RDM引擎文件
├── environment.yaml # Conda环境配置文件
├── imagenet_clstolabel.py # 处理ImageNet类别标签的脚本
├── main_adm.py # 启动ADM模型训练的主程序
├── main_dit.py # 启动DiT模型训练的主程序
├── main_ldm.py # 启动LDModel训练的主程序
├── main_mage.py # 启动MAGE模型训练的主程序
├── main_rdm.py # 启动RDM模型训练的主程序
├── prepare_imgnet_val.py # 准备ImageNet验证集用于FID评估的脚本
├── setup.py # 项目安装脚本
└── viz_rcg.ipynb # 可视化生成结果的Jupyter Notebook
2. 项目的启动文件介绍
项目的核心在于几个main_*.py文件,它们分别对应不同的模型训练入口:
main_rdm.py: 用于启动Moco v3 ViT-B/RDM模型的训练。main_mage.py: 用于训练MAGE模型,该模型可以基于Moco v3 ViT-B或ViT-L的表示进行条件生成。main_dit.py,main_adm.py: 分别用于DiT和ADM模型的训练,这些模型同样依赖于特定的编码器和预先训练好的表示。
启动文件通常需要通过命令行参数指定配置文件路径、数据路径、输出目录等关键信息,并可能利用分布式计算资源来加速训练过程。
3. 项目的配置文件介绍
配置文件位于config目录下,每个.yaml文件代表一个具体模型的训练配置。以其中一个为例,如config/rdm/mocov3vitb_simplemlp_l12_w1536.yaml,它可能包含以下几个关键部分:
- 模型参数: 如输入大小(
input_size)、批量大小(batch_size)、学习率(blr)等。 - 训练设置: 包括总epoch数(
epochs)、权重衰减(weight_decay)、是否从断点恢复训练(resume)等。 - 模型组件路径: 预训练编码器(
pretrained_enc_path)、扩散模型配置(pretrained_rdm_cfg)和检查点路径(pretrained_rdm_ckpt)等。 - 其他特定设置: 如模型特定的超参数,以及如何使用预训练模型的细节。
配置文件是控制实验细节的关键,用户可以通过修改这些配置来适应自己的需求,比如改变模型训练的持续时间、使用的GPU数量等。为了运行项目,用户需仔细阅读并调整相应的配置文件以匹配他们的硬件和研究目标。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669