PaddleOCR检测与识别模型对下划线字符的支持分析
2025-05-01 11:33:53作者:俞予舒Fleming
背景介绍
PaddleOCR作为一款优秀的OCR开源工具,在文本检测和识别领域表现出色。然而在实际应用中,我们发现其最新版本的检测模型(ch_PP-OCRv4_det_infer)和识别模型(ch_PP-OCRv4_rec_infer)在处理下划线字符时存在一定局限性。
问题现象
当输入图像中包含下划线字符时,检测模型往往无法正确框选出下划线区域,即使调整了以下关键参数也未能解决问题:
- use_dilation(是否使用膨胀)
- det_db_box_thresh(检测框阈值)
- det_db_unclip_ratio(检测框扩展比例)
同样地,识别模型也无法正确识别出下划线字符。这表明问题不仅存在于检测阶段,也存在于识别阶段。
技术分析
检测模型层面
PaddleOCR的检测模型基于DB(Differentiable Binarization)算法,该算法擅长处理常规文本区域。但下划线作为一种特殊字符,具有以下特点:
- 通常呈现为细长水平线
- 高度远小于常规字符
- 在自然场景中可能被误认为是图像噪声
这些特性使得标准检测模型难以将其识别为有效文本区域。
识别模型层面
识别模型的问题更为直接:PaddleOCR的默认字符集中并未包含下划线字符。这意味着即使检测模型成功定位了下划线区域,识别模型也无法将其正确分类为下划线。
解决方案建议
1. 模型微调
对于检测模型:
- 收集包含下划线的训练样本
- 调整模型对细长文本区域的敏感度
- 可能需要修改损失函数以更好地处理这类特殊形状
对于识别模型:
- 扩展字符集,加入下划线字符
- 使用包含下划线的数据进行重新训练
2. 后处理优化
在检测阶段后添加专门的下划线处理模块:
- 基于几何特征筛选可能的候选区域
- 对检测结果进行形态学分析以补充下划线
3. 参数调整策略
虽然常规参数调整效果有限,但可以尝试:
- 降低det_db_box_thresh以捕捉更多低置信度区域
- 增大det_db_unclip_ratio以扩展检测框范围
- 结合use_dilation增强对细长特征的捕捉
实际应用建议
在实际项目中,如果需要处理大量包含下划线的文档,建议:
- 优先考虑模型微调方案
- 对于简单场景,可以尝试基于规则的后处理
- 评估下划线的重要性,必要时可以牺牲部分精度换取稳定性
总结
PaddleOCR的默认模型在处理下划线这类特殊字符时存在固有局限,这主要源于训练数据的分布和模型设计目标。通过有针对性的模型优化和适当的后处理,可以有效提升系统对下划线的处理能力。开发者应根据实际需求选择最适合的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
nRF24L01中文数据手册下载:轻松掌握2.4GHz无线通信技术 物流配送中心选址优化模型及算法研究:提升物流效率的利器 rtl8821CULinux驱动程序:为rtl8821CU网卡提供最佳兼容性与性能【免费下载】 关于海康威视HCNetSDK.dll的调用教程及示例代码:打造高效视频监控解决方案 昆仑通态MCGS嵌入版7.503.0002完整安装包:工业控制利器,助力自动化升级 搭建Oracle RAC在Vmware ESXi6虚拟机环境下的详细过程:解锁高效数据库集群 Revit桥梁族资源下载介绍:桥梁设计利器,一键高效建模 Chrome内核浏览器易语言源码例子分享:探索Web开发的无限可能 STM32语音存储与回放系统资源:让开发更简单 MATLAB创建三维数组的九种方法详解:掌握MATLAB多维数据处理技巧
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134