LogicAnalyzer多设备同步采集功能解析
LogicAnalyzer作为一款开源的逻辑分析仪工具,其多设备同步采集功能为工程师提供了扩展通道数量的解决方案。本文将深入探讨该功能的实现原理、使用技巧以及常见问题解决方法。
多设备同步采集架构
LogicAnalyzer采用主从式架构实现多设备同步采集。当用户需要超过24个通道时,可以通过连接多个设备来扩展采集能力。系统通过EXT_CHAIN接口和GND连接实现设备间的硬件同步,确保所有设备能够在同一时刻触发并开始采集。
技术实现要点
-
时钟同步机制:主设备(Master)负责生成同步时钟信号,从设备(Slave)接收该信号实现精确同步。在100MHz采样率下测试显示,设备间的时间偏差可以控制在±1个采样周期内。
-
数据合并算法:软件层采用智能对齐算法,自动校正设备间的微小时间偏差,确保多设备采集的数据在时间轴上完美对齐。
-
通道管理:系统支持灵活配置各设备的通道使用情况,用户可根据实际需求分配通道资源。
使用注意事项
-
通道分配策略:建议将关键信号和触发信号安排在第一个设备(主设备)上,因为触发模式匹配功能要求所有参与触发的通道必须位于主设备。
-
触发配置技巧:对于边沿触发场景,应启用"快速模式匹配"选项以获得最佳性能。例如,要捕获/RES信号上升沿,应将对应通道设为"1"模式并开启此功能。
-
显示优化:由于界面空间限制,信号预览窗口最多显示24个通道。对于多设备采集,建议在正式分析时再查看完整通道数据。
常见问题解决方案
-
通道显示异常:早期版本存在当主设备启用全部24个通道时,从设备通道无法正确显示的问题。这源于渲染例程中的数组越界错误,已在后续版本修复。
-
通道选择问题:若需取消某个通道选择,应将其设置为"< NONE >"选项而非直接取消勾选。
-
性能优化:在最高采样率下,若发现微小时间偏差,可通过软件提供的通道偏移功能进行手动校正。
LogicAnalyzer的多设备同步采集功能展现了出色的工程实现,其精确的时钟同步和智能数据对齐算法为复杂数字系统的调试提供了强大支持。通过合理配置和正确使用,工程师可以轻松扩展采集通道数量,满足各种复杂场景的测试需求。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0105Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









