K3s中自定义CoreDNS和Metrics-Server资源配额的最佳实践
2025-05-06 07:34:02作者:翟江哲Frasier
在Kubernetes集群管理中,系统组件的资源配额配置是一个需要特别关注的技术点。本文将详细介绍在K3s这个轻量级Kubernetes发行版中,如何对内置的CoreDNS和Metrics-Server组件进行资源配额的自定义配置。
背景知识
K3s作为CNCF认证的Kubernetes发行版,默认会部署一些核心系统组件,包括:
- CoreDNS:集群DNS服务
- Metrics-Server:集群资源指标采集服务
这些组件默认会配置基本的资源请求(Requests)和限制(Limits),例如Metrics-Server的默认配置为:
- CPU请求:100m
- 内存请求:70Mi
为什么需要自定义资源配额
在实际生产环境中,我们可能需要调整这些默认配置,主要原因包括:
- 资源优化:根据节点规格调整更适合的资源配置
- 高可用需求:增加副本数量提高服务可用性
- 性能调优:针对特定工作负载优化资源分配
配置方法详解
K3s提供了灵活的配置机制来覆盖默认的系统组件配置。具体实现方式是通过K3s的HelmChartConfig机制来覆盖默认值。
CoreDNS资源配置示例
创建以下配置文件可以自定义CoreDNS的资源配额:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: coredns
namespace: kube-system
spec:
valuesContent: |-
deployment:
resources:
limits:
memory: 256Mi
requests:
cpu: 100m
memory: 256Mi
Metrics-Server资源配置示例
对于Metrics-Server,类似的配置如下:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: metrics-server
namespace: kube-system
spec:
valuesContent: |-
resources:
limits:
memory: 256Mi
requests:
cpu: 200m
memory: 256Mi
高级配置技巧
除了基本的资源配额外,还可以配置以下参数:
- 副本数量:通过replicaCount参数增加实例数
- 亲和性规则:配置podAffinity/podAntiAffinity
- 节点选择器:指定运行节点
- 容忍度:配置容忍特定污点
示例配置同时包含副本数和资源配额:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: coredns
namespace: kube-system
spec:
valuesContent: |-
replicaCount: 2
deployment:
resources:
limits:
memory: 256Mi
requests:
cpu: 100m
memory: 256Mi
实施建议
- 监控先行:调整前先收集现有资源使用情况
- 渐进调整:每次只调整一个参数,观察效果
- 压力测试:模拟高负载场景验证配置
- 文档记录:记录每次变更的参数和效果
常见问题处理
如果配置后组件无法启动,可以检查:
- 节点资源是否充足
- 资源配置格式是否正确
- 是否有资源配额限制
- 查看组件日志排查具体原因
通过以上方法,管理员可以灵活地根据实际环境需求调整K3s系统组件的资源配置,实现更优的集群性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30