K3s中自定义CoreDNS和Metrics-Server资源配额的最佳实践
2025-05-06 12:40:30作者:翟江哲Frasier
在Kubernetes集群管理中,系统组件的资源配额配置是一个需要特别关注的技术点。本文将详细介绍在K3s这个轻量级Kubernetes发行版中,如何对内置的CoreDNS和Metrics-Server组件进行资源配额的自定义配置。
背景知识
K3s作为CNCF认证的Kubernetes发行版,默认会部署一些核心系统组件,包括:
- CoreDNS:集群DNS服务
- Metrics-Server:集群资源指标采集服务
这些组件默认会配置基本的资源请求(Requests)和限制(Limits),例如Metrics-Server的默认配置为:
- CPU请求:100m
- 内存请求:70Mi
为什么需要自定义资源配额
在实际生产环境中,我们可能需要调整这些默认配置,主要原因包括:
- 资源优化:根据节点规格调整更适合的资源配置
- 高可用需求:增加副本数量提高服务可用性
- 性能调优:针对特定工作负载优化资源分配
配置方法详解
K3s提供了灵活的配置机制来覆盖默认的系统组件配置。具体实现方式是通过K3s的HelmChartConfig机制来覆盖默认值。
CoreDNS资源配置示例
创建以下配置文件可以自定义CoreDNS的资源配额:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: coredns
namespace: kube-system
spec:
valuesContent: |-
deployment:
resources:
limits:
memory: 256Mi
requests:
cpu: 100m
memory: 256Mi
Metrics-Server资源配置示例
对于Metrics-Server,类似的配置如下:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: metrics-server
namespace: kube-system
spec:
valuesContent: |-
resources:
limits:
memory: 256Mi
requests:
cpu: 200m
memory: 256Mi
高级配置技巧
除了基本的资源配额外,还可以配置以下参数:
- 副本数量:通过replicaCount参数增加实例数
- 亲和性规则:配置podAffinity/podAntiAffinity
- 节点选择器:指定运行节点
- 容忍度:配置容忍特定污点
示例配置同时包含副本数和资源配额:
apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
name: coredns
namespace: kube-system
spec:
valuesContent: |-
replicaCount: 2
deployment:
resources:
limits:
memory: 256Mi
requests:
cpu: 100m
memory: 256Mi
实施建议
- 监控先行:调整前先收集现有资源使用情况
- 渐进调整:每次只调整一个参数,观察效果
- 压力测试:模拟高负载场景验证配置
- 文档记录:记录每次变更的参数和效果
常见问题处理
如果配置后组件无法启动,可以检查:
- 节点资源是否充足
- 资源配置格式是否正确
- 是否有资源配额限制
- 查看组件日志排查具体原因
通过以上方法,管理员可以灵活地根据实际环境需求调整K3s系统组件的资源配置,实现更优的集群性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44