SAN 的项目扩展与二次开发
2025-05-29 23:22:34作者:郜逊炳
项目的基础介绍
SAN(NeurIPS 2023)是一个基于PyTorch的开源项目,它是《Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective》论文的官方实现。该项目针对时间序列数据中存在的非平稳性问题,提出了一种名为SAN的模型无关归一化框架。SAN通过在细粒度的时间片段上建模非平稳性,并显式学习估计未来分布,从而简化了非平稳时间序列预测任务。
项目的核心功能
- 非平稳时间序列预测:SAN通过将时间序列数据划分为时间片段,对每个片段进行归一化处理,以适应时间序列数据中快速变化的统计特性。
- 模型无关性:SAN框架可以与多种主流的时间序列预测模型配合使用,如Transformer、Autoformer、FEDformer等。
- 参数调节:仅需调整两个参数(
period_len和station_lr),即可对不同的预测任务和模型进行优化。
项目使用了哪些框架或库?
- PyTorch:用于深度学习模型的构建和训练。
- NumPy:用于数值计算。
- Pandas:用于数据处理和分析。
项目的代码目录及介绍
SAN/
├── data_provider/ # 数据加载和预处理模块
├── exp/ # 实验配置和参数设置
├── figs/ # 存储图表和可视化结果的文件夹
├── layers/ # 自定义神经网络层
├── models/ # 模型定义和实现
├── utils/ # 实用工具函数
├── .gitignore # Git忽略文件
├── LICENSE # 开源协议
├── README.md # 项目说明文件
├── requirements.txt # 环境依赖
├── run_linear.sh # 运行线性模型的脚本
├── run_longExp.py # 长期实验的运行脚本
├── run_trm.sh # 运行Transformer模型的脚本
对项目进行扩展或者二次开发的方向
- 模型增强:可以尝试将SAN框架与其他时间序列模型结合,如LSTM、GRU等,以探索更广泛的适用性和改进预测性能。
- 多模态预测:扩展SAN框架以处理多模态时间序列数据,例如结合文本、图像等信息进行联合预测。
- 实时预测:优化模型以适应实时时间序列数据的处理,实现快速响应和在线学习。
- 自动化调参:开发自动化参数调优工具,以简化模型优化过程。
- 可视化工具:增加数据可视化工具,帮助用户更好地理解模型的行为和预测结果。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430