Puerts项目中的Xil2cpp生成失败问题分析与解决方案
问题背景
在Unity项目中使用Puerts 2.1.0版本时,当尝试执行"Generate xil2cpp (all in one)"操作时可能会遇到生成失败的情况。这个问题通常出现在项目Plugins文件夹下包含第三方DLL的情况下,而删除Plugins文件夹后生成操作又能成功执行。
错误现象
系统会抛出TypeLoadException异常,具体表现为无法解析特定类型的token。错误信息中会显示类似以下内容:
TypeLoadException: Could not resolve type with token 0100000e from typeref (expected class 'System.Deployment.Application.ApplicationDeployment' in assembly 'System.Deployment, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a')
问题根源
这个错误表明项目中存在动态库依赖缺失的情况。当系统尝试访问这些缺失依赖的方法时就会抛出异常。具体来说,当xil2cpp生成器处理包含第三方DLL的项目时,如果这些DLL依赖了某些系统程序集但Unity环境中并不存在这些依赖,就会导致生成过程失败。
解决方案
1. 修改过滤器配置
Puerts提供了过滤器机制,可以通过修改过滤器配置来避免处理这些有问题的类型和方法。以下是推荐的过滤器修改方案:
[Filter]
public static Puerts.BindingMode filt(MemberInfo memberInfo)
{
try
{
switch (memberInfo)
{
case MethodInfo info when info.ReturnType.Assembly.GetName().Name == "Unity.Collections" ||
info.GetParameters().Where(p =>
GetUnrefParameterType(p).Assembly.GetName().Name ==
"Unity.Collections")
.ToArray().Length > 0:
case FieldInfo fieldInfo when fieldInfo.FieldType.Assembly.GetName().Name == "Unity.Collections":
case ConstructorInfo { ReflectedType: not null } c when c.ReflectedType.Assembly.GetName().Name == "Unity.Collections":
return Puerts.BindingMode.DontBinding;
default:
return Puerts.BindingMode.FastBinding;
}
}
catch
{
return Puerts.BindingMode.DontBinding;
}
}
[Filter]
private static bool FilterMethods(System.Reflection.MemberInfo mb)
{
// 排除 MonoBehaviour.runInEditMode, 在 Editor 环境下可用发布后不存在
try
{
if (mb.DeclaringType == typeof(MonoBehaviour) && mb.Name == "runInEditMode")
{
return true;
}
}
catch
{
return true;
}
}
2. 关键改进点
-
异常处理:在过滤器方法中添加了try-catch块,当处理类型或方法出现异常时直接返回DontBinding,避免生成过程因异常而中断。
-
特定程序集过滤:针对Unity.Collections等特定程序集进行了特殊处理,避免绑定这些可能导致问题的类型。
-
运行时不可用方法过滤:特别处理了像MonoBehaviour.runInEditMode这样在Editor可用但在发布版本中不存在的方法。
实施建议
-
逐步测试:在应用这些过滤器修改后,建议逐步测试各个功能模块,确保关键功能不受影响。
-
自定义过滤规则:根据项目实际情况,可能需要添加更多特定的过滤规则,特别是对于项目中使用的第三方库。
-
版本兼容性检查:确保所有第三方DLL与当前Unity版本兼容,避免因版本不匹配导致的依赖问题。
总结
Puerts的xil2cpp生成失败问题通常与项目中的依赖关系处理有关。通过合理配置过滤器并添加适当的异常处理,可以有效解决这类问题。开发者在集成第三方库时需要特别注意其依赖关系,并在过滤器中做好相应的处理,以确保生成过程的顺利进行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00