Puerts项目中的Xil2cpp生成失败问题分析与解决方案
问题背景
在Unity项目中使用Puerts 2.1.0版本时,当尝试执行"Generate xil2cpp (all in one)"操作时可能会遇到生成失败的情况。这个问题通常出现在项目Plugins文件夹下包含第三方DLL的情况下,而删除Plugins文件夹后生成操作又能成功执行。
错误现象
系统会抛出TypeLoadException异常,具体表现为无法解析特定类型的token。错误信息中会显示类似以下内容:
TypeLoadException: Could not resolve type with token 0100000e from typeref (expected class 'System.Deployment.Application.ApplicationDeployment' in assembly 'System.Deployment, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a')
问题根源
这个错误表明项目中存在动态库依赖缺失的情况。当系统尝试访问这些缺失依赖的方法时就会抛出异常。具体来说,当xil2cpp生成器处理包含第三方DLL的项目时,如果这些DLL依赖了某些系统程序集但Unity环境中并不存在这些依赖,就会导致生成过程失败。
解决方案
1. 修改过滤器配置
Puerts提供了过滤器机制,可以通过修改过滤器配置来避免处理这些有问题的类型和方法。以下是推荐的过滤器修改方案:
[Filter]
public static Puerts.BindingMode filt(MemberInfo memberInfo)
{
try
{
switch (memberInfo)
{
case MethodInfo info when info.ReturnType.Assembly.GetName().Name == "Unity.Collections" ||
info.GetParameters().Where(p =>
GetUnrefParameterType(p).Assembly.GetName().Name ==
"Unity.Collections")
.ToArray().Length > 0:
case FieldInfo fieldInfo when fieldInfo.FieldType.Assembly.GetName().Name == "Unity.Collections":
case ConstructorInfo { ReflectedType: not null } c when c.ReflectedType.Assembly.GetName().Name == "Unity.Collections":
return Puerts.BindingMode.DontBinding;
default:
return Puerts.BindingMode.FastBinding;
}
}
catch
{
return Puerts.BindingMode.DontBinding;
}
}
[Filter]
private static bool FilterMethods(System.Reflection.MemberInfo mb)
{
// 排除 MonoBehaviour.runInEditMode, 在 Editor 环境下可用发布后不存在
try
{
if (mb.DeclaringType == typeof(MonoBehaviour) && mb.Name == "runInEditMode")
{
return true;
}
}
catch
{
return true;
}
}
2. 关键改进点
-
异常处理:在过滤器方法中添加了try-catch块,当处理类型或方法出现异常时直接返回DontBinding,避免生成过程因异常而中断。
-
特定程序集过滤:针对Unity.Collections等特定程序集进行了特殊处理,避免绑定这些可能导致问题的类型。
-
运行时不可用方法过滤:特别处理了像MonoBehaviour.runInEditMode这样在Editor可用但在发布版本中不存在的方法。
实施建议
-
逐步测试:在应用这些过滤器修改后,建议逐步测试各个功能模块,确保关键功能不受影响。
-
自定义过滤规则:根据项目实际情况,可能需要添加更多特定的过滤规则,特别是对于项目中使用的第三方库。
-
版本兼容性检查:确保所有第三方DLL与当前Unity版本兼容,避免因版本不匹配导致的依赖问题。
总结
Puerts的xil2cpp生成失败问题通常与项目中的依赖关系处理有关。通过合理配置过滤器并添加适当的异常处理,可以有效解决这类问题。开发者在集成第三方库时需要特别注意其依赖关系,并在过滤器中做好相应的处理,以确保生成过程的顺利进行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00