PyBioMed 开源项目教程
2024-09-18 03:38:45作者:伍希望
1. 项目介绍
1.1 项目概述
PyBioMed 是一个功能丰富的 Python 库,用于计算和表征各种复杂的化学和生物分子及其相互作用。该库支持多种分子对象的表示,包括化学分子、蛋白质和 DNA,并提供了丰富的 API 接口,方便用户进行数据获取、预处理、特征计算和建模。
1.2 主要功能
- 分子数据获取:支持从多个数据库(如 NCBI、EBI、CAS、KEGG 和 DrugBank)下载分子结构。
- 分子预处理:提供分子结构的预处理功能,确保后续特征计算的准确性。
- 特征计算:支持计算化学分子、蛋白质和 DNA 的多种描述符和指纹。
- 相互作用特征:支持计算分子间相互作用的特征。
2. 项目快速启动
2.1 安装依赖
在安装 PyBioMed 之前,需要先安装 Pybel 和 RDKit。
安装 Pybel
pip install pybel
安装 RDKit
pip install rdkit
2.2 安装 PyBioMed
PyBioMed 已经在 Linux 和 Windows 系统上成功测试。安装过程如下:
在 Windows 上安装
# 下载 PyBioMed 包
wget https://github.com/gadsbyfly/PyBioMed/archive/refs/heads/master.zip
# 解压文件
unzip PyBioMed-master.zip
# 进入解压后的目录
cd PyBioMed-master
# 安装 PyBioMed
python setup.py install
在 Linux 上安装
# 下载 PyBioMed 包
wget https://github.com/gadsbyfly/PyBioMed/archive/refs/heads/master.zip
# 解压文件
unzip PyBioMed-master.zip
# 进入解压后的目录
cd PyBioMed-master
# 安装 PyBioMed
sudo python setup.py install
2.3 快速启动示例
以下是一个简单的示例,展示如何使用 PyBioMed 计算化学分子的描述符。
from PyBioMed import PyMolecule
# 创建一个 PyMolecule 对象
molecule = PyMolecule.PyMolecule()
# 计算化学分子的描述符
descriptors = molecule.CalculateDescriptors("CCO") # "CCO" 是一个 SMILES 格式的分子表示
# 打印描述符
print(descriptors)
3. 应用案例和最佳实践
3.1 预测 Caco-2 细胞渗透性
PyBioMed 可以用于预测药物分子的 Caco-2 细胞渗透性。通过计算分子的描述符,结合机器学习模型,可以预测分子的渗透性。
3.2 预测药物-靶点相互作用
PyBioMed 支持计算化学分子和蛋白质的描述符,结合这些描述符,可以构建预测药物-靶点相互作用的模型。
3.3 预测蛋白质亚细胞定位
通过计算蛋白质的描述符,结合机器学习模型,可以预测蛋白质的亚细胞定位。
4. 典型生态项目
4.1 RDKit
RDKit 是一个开源的化学信息学库,PyBioMed 依赖于 RDKit 进行分子结构的解析和处理。
4.2 Pybel
Pybel 是 OpenBabel 的 Python 接口,用于处理化学分子数据。PyBioMed 使用 Pybel 进行分子数据的预处理和特征计算。
4.3 Scikit-learn
Scikit-learn 是一个用于机器学习的 Python 库,PyBioMed 可以与 Scikit-learn 结合使用,构建和训练机器学习模型。
通过以上模块的介绍和示例,您可以快速上手使用 PyBioMed 进行化学和生物分子的特征计算和分析。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869