Switchable Whitening深度表示学习教程
项目介绍
Switchable Whitening 是一个由Xingang Pan等人在ICCV 2019上提出的深度学习框架组件。该方法通过统一不同的白化(whitening)和标准化(standardization)技术,形成一种通用形式,并能在端到端训练中自适应地选择这些操作对于不同任务的最佳统计方式。这种方法不同于专门为特定任务设计的归一化技巧,SW提供了一种更灵活的方式,以适应多样化的机器学习场景。
项目快速启动
要开始使用 Switchable Whitening,首先确保您已经安装了Python环境以及深度学习必要的库如PyTorch。以下是快速搭建ImageNet分类模型的步骤:
环境准备
确保您的环境中已安装PyTorch。可以通过以下命令安装:
pip install torch torchvision
克隆仓库
克隆项目源码到本地:
git clone https://github.com/XingangPan/Switchable-Whitening.git
cd Switchable-Whitening
运行示例
为了在ImageNet上运行ResNet50模型并应用Switchable Whitening,执行以下脚本。记得将--data路径替换为您的ImageNet数据集目录。
sh experiments/resnet50_sw/run.sh --data /path/to/your/imagenet
若要在分布式环境下利用Slurm进行训练,可以使用以下命令(需根据实际情况调整$[PARTITION]):
sh experiments/resnet50_sw/run_slurm.sh $[PARTITION]
应用案例和最佳实践
SW被设计用于提升深层表示学习的效果,在图像分类任务中特别有效。最佳实践中,开发者应关注于如何根据具体任务调整参数,比如批量大小和GPU数量,以实现性能与资源使用的最优平衡。例如,根据项目说明,使用4个GPU,每个GPU上的批量大小为64,可能会达到较好的训练效果。
典型生态项目
尽管本仓库主要聚焦于SW的应用示例,其理念和技术可以广泛应用于计算机视觉的多个领域,包括但不限于物体检测、语义分割和迁移学习等。开发者可以在自己的相关项目中引入SW模块,通过定制化集成来优化模型的表现力和泛化能力。社区中的其他项目或研究,虽然没有直接列出作为“典型生态项目”,但任何需要改进特征表达的深度学习应用都可能从SW中受益,鼓励探索与结合SW的新应用场景。
以上是关于 Switchable Whitening 的基本使用教程及概览。深入掌握其工作原理并将之融入到实际项目中,可以帮助提高模型的性能和效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00