Artillery项目中Playwright存储状态的动态加载实践
背景介绍
Artillery是一个现代化的负载测试工具,它支持使用Playwright进行浏览器级别的性能测试。在实际的性能测试场景中,经常需要模拟不同用户角色的登录状态,这时就需要动态加载不同的存储状态(storageState)文件。
问题分析
在Artillery配置文件中,开发者尝试通过参数化方式动态指定Playwright的storageState路径,期望从CSV文件中读取不同用户角色(userRole)对应的存储状态文件。初始配置中使用了storageState: "./auth/{{ userRole }}.json"的语法,但运行时却遇到了"undefined.json"文件不存在的错误。
解决方案探索
方案一:直接参数化路径(失败)
最初尝试在contextOptions中直接使用模板语法引用payload字段:
contextOptions:
storageState: "./auth/{{ userRole }}.json"
这种方法失败的原因是Artillery的模板替换机制在contextOptions配置层级不适用,导致userRole变量未被正确解析。
方案二:使用addCookies方法(成功)
最终解决方案是放弃直接配置storageState,转而使用Playwright提供的page.context().addCookies()方法动态添加认证信息。这种方法更加灵活,可以直接在测试脚本中控制认证流程。
实现建议
对于需要在Artillery中实现多用户角色测试的场景,推荐以下实践:
-
准备阶段:
- 为每个用户角色预先录制好登录状态,保存为单独的JSON文件
- 创建CSV文件映射用户角色到对应的存储状态文件
-
脚本编写:
async function testflow1(page, context, user) { // 动态加载对应角色的cookies const cookies = require(`./auth/${user.userRole}.json`); await page.context().addCookies(cookies.cookies); // 继续测试流程 // ... } -
配置优化:
- 保持payload配置不变,确保userRole字段可用
- 在测试脚本中实现存储状态的动态加载逻辑
技术要点
-
Playwright存储状态:存储状态文件包含了会话cookies、localStorage等信息,可以避免重复登录。
-
Artillery payload机制:支持从CSV文件读取测试数据,为每个虚拟用户提供不同的参数。
-
上下文隔离:每个虚拟用户拥有独立的浏览器上下文,确保测试隔离性。
最佳实践
- 对于简单的多用户测试,优先考虑使用addCookies方法
- 对于复杂场景,可以结合Artillery的before钩子进行全局初始化
- 存储状态文件应包含在版本控制中,但需注意排除敏感信息
- 定期更新存储状态文件,避免会话过期导致测试失败
通过这种方式,可以有效地在Artillery性能测试中实现多用户角色的模拟,提高测试的真实性和覆盖范围。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00