Apache Druid中处理Kafka Protobuf数据时遇到的Schema问题解析
背景介绍
Apache Druid作为一款高性能的实时分析数据库,提供了对多种数据格式的支持,包括通过扩展插件实现的Protobuf格式支持。在实际应用中,用户经常需要将Kafka中的Protobuf格式数据直接摄入到Druid中进行实时分析。
问题现象
在使用Druid 32.0.1版本时,尝试从Kafka摄入Protobuf格式数据时遇到了"Failed to sample data: Fail to get protobuf schema because of invalid schema!"的错误。尽管已经正确配置了schema registry,并且确认schema已成功注册,但Druid仍然无法正确解析数据。
问题根源分析
经过深入排查,发现问题的根本原因在于版本兼容性。Druid 32.0.1版本对Kafka Protobuf相关依赖的版本有特定要求,与最新版本的Kafka Protobuf序列化器存在兼容性问题。
具体表现为:
- Druid内置的Protobuf扩展对某些较新版本的Protobuf依赖支持不完善
- Schema Registry客户端版本与Kafka Protobuf序列化器版本需要保持一致
- 相关依赖库(如wire-runtime、protobuf-java等)的版本也需要匹配
解决方案
要解决这个问题,需要采取以下步骤:
-
版本降级:将Kafka生产端使用的kafka-protobuf-serializer和kafka-schema-registry-maven-plugin降级到7.1.16版本
-
依赖库更新:在Druid的protobuf扩展目录中添加以下必要的JAR文件:
- kafka-protobuf-provider-7.1.16.jar
- kafka-protobuf-types-7.1.16.jar
- kafka-schema-registry-client-7.1.16.jar
- kotlin-stdlib-1.9.10.jar
- okio-jvm-3.4.0.jar
- proto-google-common-protos-2.22.1.jar
- protobuf-java-3.25.5.jar
- protobuf-java-util-3.25.5.jar
- wire-runtime-jvm-4.9.7.jar
- wire-schema-jvm-4.9.7.jar
-
配置验证:确保Kafka消费者的配置正确指向Schema Registry服务,并且Protobuf消息的package和java_package定义与生产端一致
最佳实践建议
-
版本一致性:保持Kafka生产端、Schema Registry和Druid消费端的Protobuf相关依赖版本一致
-
依赖管理:定期检查Druid官方文档,了解各扩展插件支持的依赖版本范围
-
测试验证:在正式环境部署前,先在测试环境验证Protobuf数据的完整处理流程
-
监控配置:设置适当的监控,确保Schema Registry的连接和Protobuf解析过程正常工作
总结
处理Druid与Kafka Protobuf数据集成时,版本兼容性是需要特别关注的重点。通过合理控制各组件版本,并确保依赖库完整,可以避免大部分Schema解析问题。建议用户在遇到类似问题时,首先检查版本匹配情况,再逐步排查其他可能的原因。
对于开源项目,版本间的兼容性信息往往分散在各个文档或issue中,这提示我们在使用较新版本的技术栈时需要更加谨慎,必要时可以参考社区的实际使用经验来选择合适的版本组合。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00