Account Abstraction项目中的EIP-712用户操作哈希方案演进
在区块链账户抽象(Account Abstraction)项目中,用户操作(UserOperation)的哈希计算方式经历了重要演变。本文将深入解析这一技术演进背后的设计考量和实现细节。
原始哈希计算方案
在早期版本(v0.7)中,EntryPoint合约采用了一种自定义的哈希计算方式:
- 首先对动态字段(initCode、callData和paymasterAndData)进行单独哈希
- 然后将静态字段与动态字段的哈希值按固定顺序编码并再次哈希
- 最后将用户操作哈希与entrypoint地址和chainId一起编码并生成最终哈希
这种方案虽然功能完整,但在与外部签名设备(如硬件钱包)交互时存在用户体验问题。由于生成的哈希值对用户完全不可读,签名请求显示为无意义的十六进制字符串,无法提供任何操作上下文。
EIP-712方案的引入
为解决上述问题,社区提出了采用EIP-712标准来构造用户操作哈希。EIP-712是一种结构化数据签名标准,它允许将复杂数据结构以人类可读的方式呈现给签名者。
新的哈希计算方案主要改进包括:
- 在内部哈希步骤前添加EIP-712类型哈希(typehash)
- 使用包含chainId和verifyingContract的域分隔符(domain separator)替代原有的外层哈希
- 保持原有用户操作字段的编码顺序不变
技术优势分析
采用EIP-712方案带来了多重技术优势:
兼容性提升:支持标准的eth_signTypedData_v4 RPC方法,使得现有硬件钱包和移动钱包无需修改即可作为智能账户的签名器使用。
安全性增强:在签名请求中可显示结构化数据,用户能够看到操作的基本信息而非不透明的哈希值,降低了误签风险。
成本优化:相比在智能账户合约内重新计算EIP-712哈希,在EntryPoint层面实现可避免validateUserOp中的重复计算。
实现细节
EIP-712方案的具体实现包含以下关键要素:
-
类型哈希:定义UserOperation结构体的类型描述,确保签名数据的结构化表示。
-
域分隔符:包含chainId和verifyingContract,保证跨链和跨合约的签名唯一性。
-
字段编码:保持与原有方案相同的字段顺序,确保向后兼容。
未来展望
虽然EIP-712方案解决了基本可读性问题,但用户操作的完整解析仍需要钱包端的专门支持。未来可能出现更深入的结构解析,例如:
- 对callData的进一步解码,显示具体调用的合约和方法
- 支付金额和接收方的可视化呈现
- 操作风险的自动化评估提示
这种演进将进一步提升账户抽象生态的安全性和可用性,推动大规模采用。
总结
Account Abstraction项目通过引入EIP-712标准改进了用户操作哈希的计算方式,在保持原有功能的同时显著提升了与现有钱包基础设施的兼容性和用户体验。这一技术演进体现了区块链生态对安全性和可用性并重的设计理念,为账户抽象的广泛应用奠定了基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00