Tortoise-ORM 时区配置的最佳实践
背景介绍
Tortoise-ORM 是一个优秀的 Python 异步 ORM 框架,广泛应用于 FastAPI 等异步 Web 开发中。在实际开发过程中,正确处理数据库时间戳的时区问题至关重要,特别是对于跨时区的应用场景。
时区配置问题分析
许多开发者在使用 Tortoise-ORM 连接 MySQL 等数据库时,会遇到时间戳比实际时间慢8小时的问题。这通常是由于数据库连接的时区设置不正确导致的。以中国开发者为例,东八区(Asia/Shanghai)的时间如果不正确配置,就会出现这种时间偏差。
解决方案演进
初始尝试
开发者最初尝试通过在数据库连接字符串中添加时区参数来解决:
mysql://root:123456@192.100.30.102:3306/energy_dispatch?charset=utf8&timezone=Asia/Shanghai
但这种方法会抛出异常,因为 asyncmy 驱动不支持直接在连接字符串中设置 timezone 参数。
深入源码
通过分析 Tortoise-ORM 源码,发现可以在初始化时直接传递 use_tz 和 timezone 参数:
await Tortoise.init(
db_url=db_url,
modules=modules,
use_tz=False,
timezone="Asia/Shanghai",
)
配置方式对比
Tortoise-ORM 提供了三种配置方式:
- db_url:简单的连接字符串方式
- config:详细的字典配置方式
- config_file:配置文件方式
这三种方式是互斥的,只能选择其中一种使用。对于需要设置时区的场景,推荐使用 config 字典方式,因为它可以完整地支持所有配置参数。
最佳实践
使用 RegisterTortoise 配置时区
在 FastAPI 应用中,可以通过以下方式正确配置时区:
@asynccontextmanager
async def lifespan(app: FastAPI):
async with RegisterTortoise(
app,
config={
"connections": {"default": DB_URL},
"apps": {"models": {"models": ["models"]}},
"use_tz": True,
"timezone": "Asia/Shanghai",
"generate_schemas": True,
},
):
yield
参数说明
-
use_tz:是否使用时区感知时间戳
True:存储 UTC 时间,应用层负责时区转换False:使用本地时间,不进行时区转换
-
timezone:指定数据库使用的时区
- 例如 "Asia/Shanghai"、"UTC" 等
技术原理
Tortoise-ORM 的时区处理依赖于 Python 的 datetime 模块和 pytz 库。当 use_tz=True 时,所有时间戳都会转换为 UTC 时间存储,并在读取时根据当前时区转换回本地时间。当 use_tz=False 时,则直接使用本地时间,不进行任何转换。
对于中国开发者,典型的配置是:
use_tz=False
timezone="Asia/Shanghai"
这样可以确保数据库中的时间戳与本地时间一致,无需额外转换。
总结
正确处理时区问题是数据库应用开发中的重要环节。通过 Tortoise-ORM 的灵活配置,开发者可以根据实际需求选择最适合的时区处理方式。对于大多数国内应用场景,直接使用本地时间(Asia/Shanghai)并禁用时区转换(use_tz=False)是最简单可靠的解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00