Tortoise-ORM 时区配置的最佳实践
背景介绍
Tortoise-ORM 是一个优秀的 Python 异步 ORM 框架,广泛应用于 FastAPI 等异步 Web 开发中。在实际开发过程中,正确处理数据库时间戳的时区问题至关重要,特别是对于跨时区的应用场景。
时区配置问题分析
许多开发者在使用 Tortoise-ORM 连接 MySQL 等数据库时,会遇到时间戳比实际时间慢8小时的问题。这通常是由于数据库连接的时区设置不正确导致的。以中国开发者为例,东八区(Asia/Shanghai)的时间如果不正确配置,就会出现这种时间偏差。
解决方案演进
初始尝试
开发者最初尝试通过在数据库连接字符串中添加时区参数来解决:
mysql://root:123456@192.100.30.102:3306/energy_dispatch?charset=utf8&timezone=Asia/Shanghai
但这种方法会抛出异常,因为 asyncmy 驱动不支持直接在连接字符串中设置 timezone 参数。
深入源码
通过分析 Tortoise-ORM 源码,发现可以在初始化时直接传递 use_tz 和 timezone 参数:
await Tortoise.init(
db_url=db_url,
modules=modules,
use_tz=False,
timezone="Asia/Shanghai",
)
配置方式对比
Tortoise-ORM 提供了三种配置方式:
- db_url:简单的连接字符串方式
- config:详细的字典配置方式
- config_file:配置文件方式
这三种方式是互斥的,只能选择其中一种使用。对于需要设置时区的场景,推荐使用 config 字典方式,因为它可以完整地支持所有配置参数。
最佳实践
使用 RegisterTortoise 配置时区
在 FastAPI 应用中,可以通过以下方式正确配置时区:
@asynccontextmanager
async def lifespan(app: FastAPI):
async with RegisterTortoise(
app,
config={
"connections": {"default": DB_URL},
"apps": {"models": {"models": ["models"]}},
"use_tz": True,
"timezone": "Asia/Shanghai",
"generate_schemas": True,
},
):
yield
参数说明
-
use_tz:是否使用时区感知时间戳
True:存储 UTC 时间,应用层负责时区转换False:使用本地时间,不进行时区转换
-
timezone:指定数据库使用的时区
- 例如 "Asia/Shanghai"、"UTC" 等
技术原理
Tortoise-ORM 的时区处理依赖于 Python 的 datetime 模块和 pytz 库。当 use_tz=True 时,所有时间戳都会转换为 UTC 时间存储,并在读取时根据当前时区转换回本地时间。当 use_tz=False 时,则直接使用本地时间,不进行任何转换。
对于中国开发者,典型的配置是:
use_tz=False
timezone="Asia/Shanghai"
这样可以确保数据库中的时间戳与本地时间一致,无需额外转换。
总结
正确处理时区问题是数据库应用开发中的重要环节。通过 Tortoise-ORM 的灵活配置,开发者可以根据实际需求选择最适合的时区处理方式。对于大多数国内应用场景,直接使用本地时间(Asia/Shanghai)并禁用时区转换(use_tz=False)是最简单可靠的解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00