AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架、工具和库,帮助开发者快速部署深度学习应用。这些容器镜像经过优化,可直接在Amazon EC2、Amazon ECS和Amazon EKS等服务上运行,极大简化了深度学习环境的搭建过程。
近日,AWS DLC项目发布了基于PyTorch 2.5.1框架的推理专用容器镜像,支持Python 3.11环境,为机器学习推理任务提供了开箱即用的解决方案。
镜像版本与特性
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:基于Ubuntu 22.04系统,镜像标签为
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.5。该版本针对CPU推理场景进行了优化,包含了PyTorch 2.5.1+cpu及其相关生态工具。 -
GPU版本:同样基于Ubuntu 22.04系统,支持CUDA 12.4,镜像标签为
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.5。GPU版本充分利用了NVIDIA GPU的加速能力,适合高性能推理场景。
关键软件包与依赖
两个版本都预装了PyTorch生态的核心组件:
- PyTorch核心:2.5.1版本,CPU和GPU版本分别针对不同硬件进行了优化编译
- TorchVision:0.20.1版本,提供计算机视觉相关的模型和转换工具
- TorchAudio:2.5.1版本,支持音频处理和语音识别任务
- TorchServe:0.12.0版本,用于模型部署和服务化
此外,镜像中还包含了常用的数据处理和科学计算库:
- NumPy 2.1.3:高效的数值计算基础库
- Pandas 2.2.3:数据处理和分析工具
- OpenCV 4.10.0:计算机视觉库
- scikit-learn 1.5.2:机器学习算法库
- scipy 1.14.1:科学计算工具集
系统级优化
AWS DLC镜像在系统层面也进行了精心配置:
- 编译器支持:包含了GCC 11开发工具链,确保代码能够充分利用现代CPU指令集
- CUDA生态:GPU版本完整集成了CUDA 12.4工具包和cuDNN库,为深度学习计算提供硬件加速
- 开发工具:预装了Emacs等开发工具,方便用户直接在容器内进行开发和调试
应用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型服务化:通过内置的TorchServe工具,可以快速将训练好的PyTorch模型部署为可扩展的Web服务
- 批量推理任务:利用预装的数据处理库,可以高效处理大规模推理任务
- 端到端AI应用开发:完整的PyTorch生态和常用工具链支持,简化了从开发到部署的全流程
AWS Deep Learning Containers的这次更新,为使用PyTorch 2.5.1进行推理任务提供了稳定、高效的运行环境,开发者可以专注于模型和应用开发,而无需花费大量时间在环境配置和依赖管理上。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00