Vizro项目中实现服务器端行模型(SSRM)展示树形数据的实践指南
2025-06-27 08:56:13作者:滑思眉Philip
引言
在现代Web应用开发中,高效展示大型数据集是一个常见挑战。Vizro作为基于Dash构建的数据可视化框架,提供了强大的表格展示能力。本文将详细介绍如何在Vizro项目中实现服务器端行模型(Server-Side Row Model, SSRM)来展示树形结构数据,这种技术特别适合处理大型层级数据集。
服务器端行模型(SSRM)概述
服务器端行模型是一种高级数据加载策略,它只在需要时从服务器请求数据,而不是一次性加载所有数据。这种模型特别适合以下场景:
- 处理超大型数据集(百万级行以上)
- 需要实现无限滚动或分页加载
- 数据需要复杂的服务器端处理
- 树形结构数据的懒加载
实现步骤详解
1. 基础环境配置
首先确保使用最新版本的Vizro(v0.1.39或更高)和相关依赖:
pip install vizro==0.1.39 dash-ag-grid==31.3.1
2. 数据准备与转换
树形数据通常以嵌套JSON格式存储,我们需要将其转换为适合SSRM处理的扁平结构:
import pandas as pd
import requests
# 获取原始树形数据
rowData = requests.get("https://www.ag-grid.com/example-assets/small-tree-data.json").json()
# 转换为扁平结构DataFrame
def extractRowsFromData(groupKeys, data):
response = []
if len(groupKeys) == 0:
for row in data:
response.append({
"group": not row.get("children") is None,
"employeeId": row["employeeId"],
"employeeName": row["employeeName"],
"employmentType": row["employmentType"],
"jobTitle": row["jobTitle"],
})
return response
key = groupKeys[0]
for row in data:
if row["employeeId"] == key:
response += extractRowsFromData(groupKeys[1:], row["children"])
return response
pandas_row_data = pd.DataFrame([
{
"employeeId": row["employeeId"],
"employeeName": row["employeeName"],
"employmentType": row["employmentType"],
"jobTitle": row["jobTitle"],
}
for row in extractRowsFromData([], rowData)
])
3. 服务器端数据处理API
创建Flask路由处理数据请求:
from vizro import Vizro
import flask
import json
app = Vizro()
server = app.dash.server
@server.route("/api/serverData", methods=["POST"])
def serverData():
response = extractRowsFromData(flask.request.json["groupKeys"], rowData)
return json.dumps(response)
4. Vizro仪表板配置
使用Vizro模型构建仪表板界面:
import vizro.models as vm
from vizro.tables import dash_ag_grid
page_1 = vm.Page(
title="组织结构树形展示",
components=[
vm.AgGrid(
figure=dash_ag_grid(
id="grid",
data_frame=pandas_row_data,
columnDefs=[
{"field": "employeeId", "hide": True},
{"field": "employeeName", "hide": True},
{"field": "jobTitle"},
{"field": "employmentType"},
],
defaultColDef={"flex": 1},
dashGridOptions={
"autoGroupColumnDef": {
"field": "employeeName",
"cellRendererParams": {"function": "groupRenderer"},
},
"treeData": True,
"isServerSideGroupOpenByDefault": {
"function": "params ? params.rowNode.level < 2 : null"
},
"isServerSideGroup": {"function": "params ? params.group : null"},
"getServerSideGroupKey": {
"function": "params ? params.employeeId : null"
},
},
enableEnterpriseModules=True,
rowModelType="serverSide",
),
)
],
)
dashboard = vm.Dashboard(pages=[page_1])
5. 客户端JavaScript处理
添加客户端逻辑处理数据加载:
async function getServerData(request) {
response = await fetch('./api/serverData', {
'method': 'POST', 'body': JSON.stringify(request),
'headers': { 'content-type': 'application/json' }
})
return response.json()
}
function createServerSideDatasource() {
return {
getRows: async (params) => {
console.log('ServerSideDatasource.getRows: params = ', params);
var allRows = await getServerData(params.request)
var request = params.request;
var doingInfinite = request.startRow != null && request.endRow != null;
var result = doingInfinite
? {
rowData: allRows.slice(request.startRow, request.endRow),
rowCount: allRows.length,
}
: { rowData: allRows };
console.log('getRows: result = ', result);
setTimeout(function () {
params.success(result);
}, 200);
},
};
}
var dagfuncs = window.dashAgGridFunctions = window.dashAgGridFunctions || {};
dagfuncs.groupRenderer = function () {
return {
innerRenderer: (params) => {
return params.data.employeeName;
}
}
}
6. 客户端回调注册
使用Dash的clientside_callback初始化数据源:
from dash import clientside_callback, Input, Output
clientside_callback(
"""async function (id) {
const delay = ms => new Promise(res => setTimeout(res, ms));
const updateData = (grid) => {
var datasource = createServerSideDatasource();
grid.setServerSideDatasource(datasource);
};
var grid;
try {
grid = dash_ag_grid.getApi(id)
} catch {}
count = 0
while (!grid) {
await delay(200)
try {
grid = dash_ag_grid.getApi(id)
} catch {}
count++
if (count > 20) {
break;
}
}
if (grid) {
updateData(grid)
}
return window.dash_clientside.no_update
}""",
Output("grid", "id"),
Input("grid", "id"),
)
性能优化建议
- 数据分块加载:实现更精细的数据分块策略,减少每次请求的数据量
- 缓存机制:在服务器端添加数据缓存,避免重复处理相同请求
- 预加载:对于可能被频繁访问的节点,实现预加载策略
- 压缩传输:启用Gzip压缩减少网络传输量
常见问题解决
- MantineProvider错误:确保使用最新版Vizro,该问题在v0.1.39已修复
- 数据格式不一致:严格验证输入数据格式,确保符合预期结构
- 跨域问题:在开发环境中配置正确的CORS策略
总结
通过Vizro实现服务器端行模型展示树形数据,我们能够高效处理大型层级数据集。这种方法结合了Vizro的易用性和AG Grid的强大功能,为复杂数据可视化需求提供了优雅的解决方案。关键点包括:
- 正确转换树形数据为适合SSRM处理的格式
- 实现高效的服务器端数据处理API
- 合理配置AG Grid的树形展示选项
- 使用客户端回调优化数据加载体验
这种实现方式不仅适用于组织结构数据,也可广泛应用于任何需要展示层级关系的场景,如文件系统、产品分类等。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135