Vizro项目中实现服务器端行模型(SSRM)展示树形数据的实践指南
2025-06-27 13:09:24作者:滑思眉Philip
引言
在现代Web应用开发中,高效展示大型数据集是一个常见挑战。Vizro作为基于Dash构建的数据可视化框架,提供了强大的表格展示能力。本文将详细介绍如何在Vizro项目中实现服务器端行模型(Server-Side Row Model, SSRM)来展示树形结构数据,这种技术特别适合处理大型层级数据集。
服务器端行模型(SSRM)概述
服务器端行模型是一种高级数据加载策略,它只在需要时从服务器请求数据,而不是一次性加载所有数据。这种模型特别适合以下场景:
- 处理超大型数据集(百万级行以上)
- 需要实现无限滚动或分页加载
- 数据需要复杂的服务器端处理
- 树形结构数据的懒加载
实现步骤详解
1. 基础环境配置
首先确保使用最新版本的Vizro(v0.1.39或更高)和相关依赖:
pip install vizro==0.1.39 dash-ag-grid==31.3.1
2. 数据准备与转换
树形数据通常以嵌套JSON格式存储,我们需要将其转换为适合SSRM处理的扁平结构:
import pandas as pd
import requests
# 获取原始树形数据
rowData = requests.get("https://www.ag-grid.com/example-assets/small-tree-data.json").json()
# 转换为扁平结构DataFrame
def extractRowsFromData(groupKeys, data):
response = []
if len(groupKeys) == 0:
for row in data:
response.append({
"group": not row.get("children") is None,
"employeeId": row["employeeId"],
"employeeName": row["employeeName"],
"employmentType": row["employmentType"],
"jobTitle": row["jobTitle"],
})
return response
key = groupKeys[0]
for row in data:
if row["employeeId"] == key:
response += extractRowsFromData(groupKeys[1:], row["children"])
return response
pandas_row_data = pd.DataFrame([
{
"employeeId": row["employeeId"],
"employeeName": row["employeeName"],
"employmentType": row["employmentType"],
"jobTitle": row["jobTitle"],
}
for row in extractRowsFromData([], rowData)
])
3. 服务器端数据处理API
创建Flask路由处理数据请求:
from vizro import Vizro
import flask
import json
app = Vizro()
server = app.dash.server
@server.route("/api/serverData", methods=["POST"])
def serverData():
response = extractRowsFromData(flask.request.json["groupKeys"], rowData)
return json.dumps(response)
4. Vizro仪表板配置
使用Vizro模型构建仪表板界面:
import vizro.models as vm
from vizro.tables import dash_ag_grid
page_1 = vm.Page(
title="组织结构树形展示",
components=[
vm.AgGrid(
figure=dash_ag_grid(
id="grid",
data_frame=pandas_row_data,
columnDefs=[
{"field": "employeeId", "hide": True},
{"field": "employeeName", "hide": True},
{"field": "jobTitle"},
{"field": "employmentType"},
],
defaultColDef={"flex": 1},
dashGridOptions={
"autoGroupColumnDef": {
"field": "employeeName",
"cellRendererParams": {"function": "groupRenderer"},
},
"treeData": True,
"isServerSideGroupOpenByDefault": {
"function": "params ? params.rowNode.level < 2 : null"
},
"isServerSideGroup": {"function": "params ? params.group : null"},
"getServerSideGroupKey": {
"function": "params ? params.employeeId : null"
},
},
enableEnterpriseModules=True,
rowModelType="serverSide",
),
)
],
)
dashboard = vm.Dashboard(pages=[page_1])
5. 客户端JavaScript处理
添加客户端逻辑处理数据加载:
async function getServerData(request) {
response = await fetch('./api/serverData', {
'method': 'POST', 'body': JSON.stringify(request),
'headers': { 'content-type': 'application/json' }
})
return response.json()
}
function createServerSideDatasource() {
return {
getRows: async (params) => {
console.log('ServerSideDatasource.getRows: params = ', params);
var allRows = await getServerData(params.request)
var request = params.request;
var doingInfinite = request.startRow != null && request.endRow != null;
var result = doingInfinite
? {
rowData: allRows.slice(request.startRow, request.endRow),
rowCount: allRows.length,
}
: { rowData: allRows };
console.log('getRows: result = ', result);
setTimeout(function () {
params.success(result);
}, 200);
},
};
}
var dagfuncs = window.dashAgGridFunctions = window.dashAgGridFunctions || {};
dagfuncs.groupRenderer = function () {
return {
innerRenderer: (params) => {
return params.data.employeeName;
}
}
}
6. 客户端回调注册
使用Dash的clientside_callback初始化数据源:
from dash import clientside_callback, Input, Output
clientside_callback(
"""async function (id) {
const delay = ms => new Promise(res => setTimeout(res, ms));
const updateData = (grid) => {
var datasource = createServerSideDatasource();
grid.setServerSideDatasource(datasource);
};
var grid;
try {
grid = dash_ag_grid.getApi(id)
} catch {}
count = 0
while (!grid) {
await delay(200)
try {
grid = dash_ag_grid.getApi(id)
} catch {}
count++
if (count > 20) {
break;
}
}
if (grid) {
updateData(grid)
}
return window.dash_clientside.no_update
}""",
Output("grid", "id"),
Input("grid", "id"),
)
性能优化建议
- 数据分块加载:实现更精细的数据分块策略,减少每次请求的数据量
- 缓存机制:在服务器端添加数据缓存,避免重复处理相同请求
- 预加载:对于可能被频繁访问的节点,实现预加载策略
- 压缩传输:启用Gzip压缩减少网络传输量
常见问题解决
- MantineProvider错误:确保使用最新版Vizro,该问题在v0.1.39已修复
- 数据格式不一致:严格验证输入数据格式,确保符合预期结构
- 跨域问题:在开发环境中配置正确的CORS策略
总结
通过Vizro实现服务器端行模型展示树形数据,我们能够高效处理大型层级数据集。这种方法结合了Vizro的易用性和AG Grid的强大功能,为复杂数据可视化需求提供了优雅的解决方案。关键点包括:
- 正确转换树形数据为适合SSRM处理的格式
- 实现高效的服务器端数据处理API
- 合理配置AG Grid的树形展示选项
- 使用客户端回调优化数据加载体验
这种实现方式不仅适用于组织结构数据,也可广泛应用于任何需要展示层级关系的场景,如文件系统、产品分类等。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217