Gymnasium项目中RecordVideo内存泄漏问题分析与解决方案
问题背景
在使用Gymnasium项目的RecordVideo包装器时,开发者发现当录制大量训练视频时,内存使用量会持续增长,最终可能导致进程崩溃。这个问题在长时间训练过程中尤为明显,即使开发者已经合理控制了录制频率。
问题现象
通过一个简单的CartPole环境示例代码,当将评估回合数(num_eval_episodes)增加到500时,可以观察到RAM使用量会随着每个视频的录制而不断增加。这种内存增长现象会持续到环境关闭为止,对于需要长时间运行的训练任务来说,这是一个严重的问题。
技术分析
经过深入调查,发现这个问题并非直接由Gymnasium的RecordVideo包装器本身引起,而是与其底层依赖库有关:
-
MoviePy问题:初步怀疑是MoviePy库存在内存泄漏问题,该库是RecordVideo包装器的视频处理后端。MoviePy在每次视频处理完成后可能没有正确释放内存资源。
-
NumPy问题:进一步调查发现,问题实际上可能与NumPy库的内存管理机制有关。NumPy数组在处理视频帧数据时可能没有及时释放内存。
解决方案
针对这个问题,Gymnasium团队提出了以下解决方案:
-
手动垃圾回收:在每次环境重置(reset)或视频录制完成后,显式调用Python的垃圾回收机制。可以通过
import gc然后执行gc.collect()来实现。 -
包装器改进:计划在RecordEpisode包装器中默认添加垃圾回收功能,作为内置的内存管理机制。这将通过添加一个新的参数来实现,允许开发者控制垃圾回收行为。
最佳实践建议
对于需要使用RecordVideo功能的开发者,建议:
- 控制视频录制频率,不要录制每个训练回合
- 定期重启训练环境以释放内存
- 监控内存使用情况,设置适当的警报阈值
- 考虑使用自定义的视频录制解决方案,针对特定需求优化内存使用
总结
内存管理在机器学习训练过程中至关重要,特别是在涉及视频录制等资源密集型操作时。Gymnasium团队已经意识到这个问题,并正在积极寻求解决方案。开发者在使用RecordVideo功能时应当注意内存使用情况,并采取适当的预防措施来避免内存泄漏导致的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00