gqlgen快速入门指南
2024-09-27 05:00:10作者:伍希望
gqlgen是一款基于Go语言的GraphQL服务器库,它倡导“模式优先”的开发方式,通过代码生成简化API的构建过程,确保类型安全且高效。本指南旨在帮助您了解并快速上手gqlgen,涵盖其基本的目录结构、启动文件以及配置文件的使用。
1. 项目的目录结构及介绍
当您使用gqlgen init
命令初始化一个新项目时,它将自动生成一套推荐的目录布局,如下所示:
my-project/
├── go.mod <- Go 模块配置文件
├── go.sum <- 记录依赖版本的文件
├── gqlgen.yml <- gqlgen的配置文件,用于控制代码生成
├── graph <- 包含所有与图谱相关的内容
│ ├── generated <- 自动生成的运行时代码
│ │ └── generated.go
│ ├── model <- 图模型包,包括自动生成和其他手动创建的模型
│ │ └── models_gen.go
│ ├── resolver.go <- 根图解析器类型定义,是处理查询和变异的主要入口点
│ ├── schema.graphqls <- 主GraphQL模式文件(模式可以分散在多个文件中)
│ └── schema.resolvers.go <- 实现GraphQL模式中定义的解析逻辑
└── server.go <- 应用程序的主入口文件,负责启动HTTP服务
- go.mod: 记录了项目依赖和模块信息。
- gqlgen.yml: 配置gqlgen如何生成代码,如模型路径、自定义类型等。
- graph目录: 存储图模型定义、模式定义与解析逻辑。
- server.go: 启动服务器的核心文件,通常包含main函数。
2. 项目的启动文件介绍
server.go
这个文件是应用程序启动的关键,包含您的主函数(main()
)。在这个文件中,您会导入生成的代码和自定义的解析逻辑,然后初始化HTTP服务器来监听GraphQL请求。一个基础的server.go
示例可能会这样做:
package main
import (
"github.com/99designs/gqlgen/handler"
"net/http"
)
func main() {
http.Handle("/", handler.GraphQL(graph.New()))
http.ListenAndServe(":8080", nil)
}
这里假设graph.New()
返回了一个配置好的GraphQL执行器实例,该实例根据您的模式和解析器进行初始化。
3. 项目的配置文件介绍
gqlgen.yml
此配置文件指导gqlgen生成代码的过程。以下是一些关键字段的简要说明:
- schema: 指定GraphQL模式文件的位置。
- models: 定义自定义模型和它们在GraphQL中的映射。
- exec: 控制生成的执行器代码的细节。
- resolver: 指明解析器的实现所在位置。
- generator: 允许对代码生成行为进行更细致的控制,比如命名策略或额外的代码片段。
例如:
schema:
- schema.graphqls
models:
User:
model: github.com/yournamespace/models.User
exec:
filename: graph/generated/generated.go
resolver:
filename: graph/resolver.go
package: resolver
通过以上内容,您可以快速理解gqlgen项目的骨架,并根据这些指导开始构建自己的GraphQL服务。记得调整路径和包名以匹配您的具体项目设置。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133