gqlgen快速入门指南
2024-09-27 10:21:08作者:伍希望
gqlgen是一款基于Go语言的GraphQL服务器库,它倡导“模式优先”的开发方式,通过代码生成简化API的构建过程,确保类型安全且高效。本指南旨在帮助您了解并快速上手gqlgen,涵盖其基本的目录结构、启动文件以及配置文件的使用。
1. 项目的目录结构及介绍
当您使用gqlgen init命令初始化一个新项目时,它将自动生成一套推荐的目录布局,如下所示:
my-project/
├── go.mod <- Go 模块配置文件
├── go.sum <- 记录依赖版本的文件
├── gqlgen.yml <- gqlgen的配置文件,用于控制代码生成
├── graph <- 包含所有与图谱相关的内容
│ ├── generated <- 自动生成的运行时代码
│ │ └── generated.go
│ ├── model <- 图模型包,包括自动生成和其他手动创建的模型
│ │ └── models_gen.go
│ ├── resolver.go <- 根图解析器类型定义,是处理查询和变异的主要入口点
│ ├── schema.graphqls <- 主GraphQL模式文件(模式可以分散在多个文件中)
│ └── schema.resolvers.go <- 实现GraphQL模式中定义的解析逻辑
└── server.go <- 应用程序的主入口文件,负责启动HTTP服务
- go.mod: 记录了项目依赖和模块信息。
- gqlgen.yml: 配置gqlgen如何生成代码,如模型路径、自定义类型等。
- graph目录: 存储图模型定义、模式定义与解析逻辑。
- server.go: 启动服务器的核心文件,通常包含main函数。
2. 项目的启动文件介绍
server.go
这个文件是应用程序启动的关键,包含您的主函数(main())。在这个文件中,您会导入生成的代码和自定义的解析逻辑,然后初始化HTTP服务器来监听GraphQL请求。一个基础的server.go示例可能会这样做:
package main
import (
"github.com/99designs/gqlgen/handler"
"net/http"
)
func main() {
http.Handle("/", handler.GraphQL(graph.New()))
http.ListenAndServe(":8080", nil)
}
这里假设graph.New()返回了一个配置好的GraphQL执行器实例,该实例根据您的模式和解析器进行初始化。
3. 项目的配置文件介绍
gqlgen.yml
此配置文件指导gqlgen生成代码的过程。以下是一些关键字段的简要说明:
- schema: 指定GraphQL模式文件的位置。
- models: 定义自定义模型和它们在GraphQL中的映射。
- exec: 控制生成的执行器代码的细节。
- resolver: 指明解析器的实现所在位置。
- generator: 允许对代码生成行为进行更细致的控制,比如命名策略或额外的代码片段。
例如:
schema:
- schema.graphqls
models:
User:
model: github.com/yournamespace/models.User
exec:
filename: graph/generated/generated.go
resolver:
filename: graph/resolver.go
package: resolver
通过以上内容,您可以快速理解gqlgen项目的骨架,并根据这些指导开始构建自己的GraphQL服务。记得调整路径和包名以匹配您的具体项目设置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882