Self-Driving-Car- 的安装和配置教程
2025-05-29 05:31:55作者:咎岭娴Homer
项目基础介绍
本项目是一个基于卷积神经网络(CNN)的自动驾驶车辆端到端模型,它通过分析前视摄像头的原始像素数据预测转向角度。该模型不需要大量的训练数据,即可学习如何在不同条件下驾驶,包括高速公路、本地道路、住宅街道,无论晴朗、多云还是雨天。这个系统被称为DAVE-2,是NVIDIA公司研究论文的实践实现。
编程语言
项目主要使用Python编程语言,以及TensorFlow和Keras框架进行深度模型的构建和训练。
关键技术和框架
- 卷积神经网络(CNN): 用于图像识别和处理,可以自动学习图像特征。
- TensorFlow: 一个开源的深度学习框架,由Google Brain团队开发。
- Keras: 一个在TensorFlow之上的高级神经网络API,用于快速构建和迭代深度学习模型。
准备工作
在开始安装和配置之前,请确保您的计算机系统满足以下要求:
- Python环境: 安装Python 3.x版本,并确保pip也已安装。
- TensorFlow: 安装TensorFlow框架,确保版本兼容。
- 依赖库: 准备安装项目所需的Python库。
- 数据集: 下载并准备训练数据集。
安装步骤
-
克隆项目仓库到本地环境:
git clone https://github.com/adityaguptai/Self-Driving-Car-.git cd Self-Driving-Car- -
安装项目依赖的Python库:
pip install -r requirements.txt如果
requirements.txt文件不存在,您可能需要手动安装以下库:numpy, tensorflow, keras, matplotlib。 -
下载训练数据集:
数据集链接在项目说明中有提供,但请确保遵循相关使用条款。下载后,将数据集放置在项目的相应目录下。
-
训练模型:
使用以下命令开始训练模型:
python3 train.py训练过程可能需要较长的时间,具体取决于您的硬件配置。
-
运行模型:
训练完成后,您可以使用以下命令在实时摄像头馈送上运行模型:
python3 run.py或者,在数据集上运行模型:
python3 run_dataset.py -
可视化训练:
如果您希望可视化训练过程,可以使用TensorBoard:
tensorboard --logdir=./logs打开浏览器并访问
http://0.0.0.0:6006/查看训练图表。
请严格按照以上步骤进行操作,如果您在安装和配置过程中遇到任何问题,请检查您的环境配置,或搜索相关错误信息寻求解决方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0133
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692