TorchRL v0.7.0发布:强化学习框架的重大升级
2025-06-17 19:35:23作者:宣聪麟
项目简介
TorchRL是PyTorch生态中的强化学习(Reinforcement Learning)框架,它为研究人员和开发者提供了构建、训练和评估强化学习算法所需的工具和组件。作为一个模块化设计的库,TorchRL整合了环境、模型、损失函数、回放缓冲区等核心组件,使得强化学习算法的实现更加高效和便捷。
主要更新内容
编译兼容性提升
本次v0.7.0版本的一个重大改进是大幅提升了与torch.compile的兼容性。通过优化代码结构,现在所有SOTA(State-Of-The-Art)训练脚本都能接受compile=1参数,实现了1到4倍的性能提升。特别是回放缓冲区(ReplayBuffer)现在基本都能兼容编译,为强化学习训练带来了显著的加速效果。
多头部策略优化
针对复合动作空间(multi-head policies)的处理进行了重要改进:
- 修改了CompositeDistribution的行为,现在会为分布中的每个叶张量写入不同的对数概率
- PPO损失函数现在能更好地处理复合动作,为每个动作组件单独计算优势函数
- 新增了tensordict.nn.set_composite_lp_aggregate函数控制新行为
这些改进使得处理复杂动作空间(如同时包含离散和连续动作)变得更加自然和高效。
新环境与转换器
- ChessEnv:新增了国际象棋环境,支持FEN(福赛斯-爱德华兹记号法)、PGN(便携式棋局记号法)等多种棋局表示方式,并提供了像素渲染功能
- TrajCounter:轨迹计数器转换器,用于跟踪轨迹长度
- Hash和Tokenizer:哈希和分词器转换器,特别适合语言模型相关任务
- LineariseReward:线性化奖励转换器,可将复杂奖励信号转换为线性形式
存储系统改进
引入了LazyStackStorage,这是一种基于ListStorage的新型存储系统,能够自动将样本表示为LazyStackedTensorDict。这种设计使得存储不规则张量(ragged tensors)变得更加容易,虽然它们在内存中不是连续存储的。
规格(Spec)系统增强
- 新增auto_spec_属性,可根据虚拟 rollout自动设置规格
- 对于批处理环境,现在可以通过_spec_unbatched访问未批处理的规格
- 规格系统现在默认会谨慎锁定,确保环境未被修改,从而可以缓存更多信息
性能优化
- 在GPU上加速了切片采样器(SliceSampler)
- 避免了在SliceSampler中克隆轨迹
- 优化了编译后的ReplayBuffer性能
- 改进了设备传输效率,特别是在混合设备场景下
其他重要改进
- MCTSForest:实现了蒙特卡洛树搜索森林,为规划算法提供了新工具
- Ordinal分布:新增了序数分布支持
- Choice规格:新增了选择规格类型
- 复合分布批处理:改进了复合分布的批处理支持
- 环境步进控制:新增env.step_mdp方法,提供更灵活的环境控制
向后兼容性说明
- 移除了AdditiveGaussianWrapper、InPlaceSampler、NormalParamWrapper和OrnsteinUhlenbeckProcessWrapper等已弃用的类
- 修改了默认MLP配置,深度从3改为0(相当于普通线性层)
- 规格系统现在默认锁定,直接修改子规格将不再允许
开发者工具改进
- 新增timeit.printevery功能,方便性能分析
- 添加group_optimizers工具,简化优化器管理
- 改进了类型提示,增强IDE自动补全支持
- 新增reset_parameters_recursive方法,方便模块参数重置
总结
TorchRL v0.7.0带来了全面的性能提升和新功能,特别是在编译兼容性、多头部策略支持和环境多样性方面。这些改进使得TorchRL在处理复杂强化学习任务时更加高效和灵活,同时也为研究人员提供了更多实验工具。对于正在使用或考虑使用PyTorch进行强化学习开发的用户来说,这次升级值得关注和尝试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355