Scanpy中rank_genes_groups_dotplot与filter_rank_genes_groups的兼容性问题解析
问题背景
在使用单细胞分析工具Scanpy时,研究人员经常需要对差异表达基因进行可视化分析。rank_genes_groups_dotplot是一个常用的可视化函数,它能够直观地展示不同细胞群中差异表达基因的表达模式。然而,当用户尝试将filter_rank_genes_groups函数筛选后的结果传递给rank_genes_groups_dotplot时,可能会遇到一些兼容性问题。
核心问题
主要问题出现在当用户尝试使用rank_genes_groups_dotplot可视化filter_rank_genes_groups筛选后的结果,并指定values_to_plot="logfoldchanges"参数时。系统会抛出错误提示:"Please run sc.tl.rank_genes_groups with 'n_genes=adata.shape[1]' to save all gene scores. Currently, only X are found"。
问题原因
这个错误产生的原因是filter_rank_genes_groups函数在筛选差异表达基因时,默认不会保留所有基因的统计信息(如logfoldchanges等)。而rank_genes_groups_dotplot在尝试绘制logfoldchanges时,需要访问这些完整的统计信息。
解决方案
要解决这个问题,有以下几种方法:
-
在原始rank_genes_groups分析时保存所有基因信息: 在进行差异表达分析时,使用n_genes=adata.shape[1]参数,确保保存所有基因的统计信息:
sc.tl.rank_genes_groups(adata, groupby='leiden', n_genes=adata.shape[1]) -
正确指定key参数: 当使用filter_rank_genes_groups筛选后,确保在可视化时指定正确的key参数:
sc.pl.rank_genes_groups_dotplot(adata, key='rank_genes_groups_filtered') -
避免在筛选结果上使用values_to_plot: 如果不需要特定的统计值可视化,可以省略values_to_plot参数,默认展示基因表达情况。
最佳实践建议
-
在进行差异表达分析时,如果后续可能需要进行多种可视化或深入分析,建议始终使用n_genes=adata.shape[1]参数保存完整信息。
-
使用filter_rank_genes_groups筛选差异基因后,新的结果会存储在adata.uns['rank_genes_groups_filtered']中,在可视化时需要明确指定这个key。
-
对于logfoldchanges等统计值的可视化,确保原始分析中这些值已被完整保存。如果遇到错误,可以重新运行rank_genes_groups并保存完整信息。
总结
Scanpy提供了强大的差异表达分析和可视化功能,但在使用过程中需要注意函数间的数据传递和兼容性。理解rank_genes_groups、filter_rank_genes_groups和rank_genes_groups_dotplot等函数之间的关系,能够帮助研究人员更高效地进行单细胞数据分析。当遇到类似问题时,检查数据是否完整保存、是否正确指定参数通常是解决问题的关键。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00