Apache Metron 技术文档
2024-12-23 06:01:56作者:郦嵘贵Just
1. 安装指南
要获取 Apache Metron,请访问 Apache Metron 官方文档 下载最新版本的 Metron。此代码库是一个子模块的集合,定期更新以指向最新版本。以下是获取 Metron 代码的几种方式:
- 使用
git clone --recursive https://github.com/apache/metron
命令克隆仓库。 - 下载 ZIP 文件。
- 单独克隆或下载每个仓库(此方法可能有最新的代码)。
2. 项目使用说明
Apache Metron 是一个集成多种开源大数据技术的集中式安全监控和分析工具。Metron 提供了日志聚合、完整数据包捕获索引、存储、高级行为分析以及数据丰富等功能,同时将最新的威胁情报信息应用于单一平台内的安全遥测。
Metron 主要分为以下四个区域:
- 捕获、存储和规范化任何类型的安全遥测数据的高速率机制。由于安全遥测数据不断生成,因此需要一种方法来高速摄取数据并将其推送到各种处理单元进行高级计算和分析。
- 实时处理和应用丰富信息,例如威胁情报、地理位置和 DNS 信息,这些信息被实时应用于传入的遥测数据,提供了上下文和情境感知,以及进行侦查所必需的 "谁" 和 "哪里" 的信息。
- 基于信息使用方式的高效信息存储:
- 日志和遥测数据的存储便于高效挖掘和分析,以获得简洁的安全可视性。
- 提取和重建完整数据包的能力可以帮助分析人员回答诸如攻击者的真实身份、泄露的数据以及数据发送的位置等问题。
- 长期存储不仅增加了时间上的可视性,还允许使用高级分析技术(如机器学习)来创建信息模型。然后可以将传入数据与这些存储的模型进行评分,以实现高级异常检测。
- 提供一个界面,让安全调查员能够集中查看系统和警告传递的数据。Metron 的界面展示了警告摘要,以及与特定警告相关的威胁情报和丰富数据,所有这些都显示在单个页面上。此外,高级搜索功能和完整数据包提取工具也呈现给分析人员,无需切换到其他工具即可进行侦查。
3. 项目 API 使用文档
Metron 的架构是基于 Kappa 架构,使用 Apache Storm 作为处理组件,Apache Kafka 作为统一数据总线。以下是一些与架构相关的子部分的链接,供进一步了解:
- Parsers:从 Kafka 解析数据到 Metron 数据模型,并将其传递到下游的丰富阶段。
- Enrichment:解析后丰富数据,并通过自定义规则语言提供将消息标记为警告和分配风险分级的能力。
- Indexing:将丰富后的数据索引到 HDFS、Elasticsearch 或 Solr。
以下是一些在架构各个部分中都有用的小工具:
- Stellar:一种自定义数据转换语言,在 Metron 中从简单的字段转换到表达分级规则都有使用。
- Model as a Service:一个 Yarn 应用程序,可以在集群上部署机器学习和统计模型以及相关的 Stellar 函数,以便能够以可扩展的方式调用它们。
- Data management:一组数据管理实用程序,旨在将数据以允许通过 Metron 进行丰富的格式存储到 HBase 中。它包含与通过 TAXII 暴露的威胁情报源的集成,以及简单的平面文件结构。
- Profiler:一种特征提取机制,可以生成描述实体行为(实体可能是服务器、用户、子网或应用程序)的配置文件。一旦生成描述正常行为的配置文件,就可以构建识别异常行为的模型。
4. 项目安装方式
以下是在不同环境中构建 Metron 的命令:
- 构建完整项目并运行测试:
$ mvn clean install
- 构建不包含测试的项目:
$ mvn clean install -DskipTests
- 使用 HDP 配置文件构建:
$ mvn clean install -PHDP-2.5.0.0
如果不想将构建的工件部署到本地 .m2
仓库,可以将命令中的 install
替换为 package
。
对于在 Docker 容器中的构建,请参考 ansible-docker。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133