MMaDA 的安装和配置教程
2025-05-23 22:10:12作者:魏侃纯Zoe
1. 项目基础介绍和主要编程语言
MMaDA(Multimodal Large Diffusion Language Models)是一种新型的多模态扩散基础模型,旨在在文本推理、多模态理解和文本到图像生成等多个领域实现卓越的性能。MMaDA的特点在于其统一的扩散架构、混合长链式思维(CoT)微调策略以及针对扩散基础模型定制的统一政策梯度RL算法(UniGRPO)。本项目主要使用Python编程语言开发。
2. 项目使用的关键技术和框架
- 统一的扩散架构:消除了模态特定组件的需求,采用共享的概率性公式和模态不可知的设计。
- 混合长链式思维(CoT)微调策略:在多个模态之间整理出统一的CoT格式。
- 统一政策梯度RL算法(UniGRPO):适合于扩散基础模型,利用多样化的奖励模型实现推理和生成任务的统一微调。
项目中使用了以下关键框架和技术:
- PyTorch:用于深度学习模型的开发。
- Transformers:基于PyTorch的开源机器学习库,提供了大量预训练模型和工具。
- Accelerate:用于简化分布式训练的配置和运行。
- Wandb:用于实验跟踪和结果可视化。
3. 项目安装和配置的准备工作与详细步骤
准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python 3.8 或更高版本
- pip 20.3 或更高版本
- CUDA(如果使用NVIDIA GPU)
- git
安装步骤
-
克隆项目仓库:
git clone https://github.com/Gen-Verse/MMaDA.git cd MMaDA -
安装项目依赖:
pip install -r requirements.txt -
运行本地Gradio演示(可选):
python app.py这将启动一个本地服务器,您可以通过浏览器访问来查看演示。
-
(可选)如果您想在线尝试模型,可以访问Huggingface演示。
-
运行推理脚本:
-
文本生成:
python generate.py -
多模态生成和文本到图像生成:
首先登录您的Wandb账户:
wandb login然后运行以下命令进行推理:
python3 inference_mmu.py config=configs/mmada_demo.yaml mmu_image_root=./mmu_validation question='请详细描述这张图片。'或者运行以下命令进行文本到图像生成:
python3 inference_t2i.py config=configs/mmada_demo.yaml batch_size=1 validation_prompts_file=validation_prompts/text2image_prompts.txt guidance_scale=3.5 generation_timesteps=15 mode='t2i'
-
-
(高级用户)如果您想进行训练,请按照
README.md中的训练指南操作,调整相应的配置文件,并使用accelerate工具启动训练。
以上步骤将帮助您成功安装和配置MMaDA项目。如果您在安装过程中遇到任何问题,请查阅项目文档或向社区寻求帮助。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141