OpenAI Agents Python项目中自定义JSON Schema输出的解决方案
背景介绍
在OpenAI Agents Python项目中,开发者经常需要为Agent的输出定义特定的数据结构格式。传统方法是使用Pydantic模型来生成JSON Schema,但这种方法存在一些局限性,特别是在处理复杂数据结构时。
问题分析
开发者在使用过程中遇到了几个典型问题:
-
多层嵌套引用问题:当数据结构中存在多层
$defs引用时,某些第三方LLM模型无法正确解析这种复杂的JSON Schema结构。 -
Optional类型转换问题:Pydantic生成的Schema中包含
{"type": "null"}这样的定义,部分模型不支持这种语法。 -
字典类型限制:Structured Outputs要求所有键都必须预先定义,无法使用完全动态的
dict[str, str]这样的类型。 -
默认值问题:Schema中的默认值设置有时会导致模型解析错误。
解决方案演进
项目维护者提供了几种逐步完善的解决方案:
初始方案:使用dataclass替代Pydantic
开发者可以使用Python标准库中的dataclass来定义输出结构,这比Pydantic模型更加轻量级:
from dataclasses import dataclass
@dataclass
class Output:
joke: str
进阶方案:处理复杂数据结构
对于更复杂的数据结构,如包含嵌套类和列表的情况:
@dataclass
class OnError:
error_type: str
next: str = ""
@dataclass
class BaseNode:
on_error: list[OnError] = field(default_factory=list)
action: Optional[str] = ""
最终方案:非严格Schema模式
项目最新版本引入了output_schema_strict=False参数,允许开发者绕过严格的Schema验证:
agent = Agent(
name="Assistant",
output_type=ComplexOutputModel,
output_schema_strict=False
)
技术实现细节
-
Schema生成机制:项目内部使用TypeAdapter将Python类型转换为JSON Schema,支持dataclass、Pydantic模型等多种类型。
-
Schema优化:通过
output_schema_strict参数可以控制是否生成严格模式的Schema,避免某些模型不支持的语法特性。 -
错误处理:当Schema不符合要求时,会抛出明确的错误信息,帮助开发者快速定位问题。
最佳实践建议
-
对于简单数据结构,优先使用dataclass定义输出类型。
-
当遇到模型不支持的特性时,尝试使用
output_schema_strict=False选项。 -
避免在Schema中使用完全动态的字典类型,尽可能明确定义所有字段。
-
谨慎使用默认值,某些模型可能对默认值的处理存在限制。
总结
OpenAI Agents Python项目通过不断迭代,提供了灵活的输出Schema定义方式,使开发者能够根据实际需求和使用场景选择最适合的方案。理解这些技术细节有助于开发者更高效地构建基于LLM的智能代理应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00