在modelscope/swift项目中实现Vit全参数微调与LLM的LoRA训练结合
2025-05-31 10:25:32作者:冯梦姬Eddie
在大型多模态语言模型(MLLM)的微调过程中,如何平衡视觉编码器(Vision Transformer, Vit)和语言模型(LLM)的训练策略是一个常见的技术挑战。本文将详细介绍在modelscope/swift项目中实现Vit全参数微调同时使用LoRA技术训练LLM的方法。
技术背景
多模态模型通常包含两个主要组件:视觉编码器(如Vit)和语言模型(如LLM)。传统微调方法会对整个模型进行全参数训练,但这会带来以下问题:
- 计算资源消耗大
- 容易过拟合
- 训练效率低
LoRA(Low-Rank Adaptation)技术通过在预训练模型的权重上添加低秩矩阵来减少可训练参数数量,特别适合LLM的微调。然而,视觉编码器通常需要全参数微调以获得更好的视觉特征表示。
解决方案实现
在modelscope/swift项目中,可以通过修改trainers/mixin.py文件来实现这一目标。核心思路是:
- 对Vit部分保持全参数训练
- 对LLM部分应用LoRA适配器
- 使用
modules_to_save参数确保Vit参数不被冻结
具体实现时,需要在LoRA配置中明确指定哪些模块需要保持全参数训练。这种方法既保留了Vit的特征提取能力,又通过LoRA显著减少了LLM部分的训练参数。
技术优势
这种混合训练策略具有以下优势:
- 计算效率:相比全参数微调,大幅减少了训练参数
- 模型性能:Vit的全参数训练保证了视觉特征的充分学习
- 灵活性:可以根据任务需求灵活调整两部分的学习率
- 防止过拟合:LoRA技术有效控制了LLM部分的参数更新幅度
实践建议
在实际应用中,建议:
- 对Vit部分使用较小的学习率
- 监控两部分训练损失的变化趋势
- 根据硬件条件调整batch size
- 考虑使用梯度累积技术平衡显存使用
这种混合训练策略特别适合视觉-语言对齐任务,如视觉问答、图像描述生成等场景,能够在保证模型性能的同时显著提升训练效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869