首页
/ 在modelscope/swift项目中实现Vit全参数微调与LLM的LoRA训练结合

在modelscope/swift项目中实现Vit全参数微调与LLM的LoRA训练结合

2025-05-31 11:49:28作者:冯梦姬Eddie

在大型多模态语言模型(MLLM)的微调过程中,如何平衡视觉编码器(Vision Transformer, Vit)和语言模型(LLM)的训练策略是一个常见的技术挑战。本文将详细介绍在modelscope/swift项目中实现Vit全参数微调同时使用LoRA技术训练LLM的方法。

技术背景

多模态模型通常包含两个主要组件:视觉编码器(如Vit)和语言模型(如LLM)。传统微调方法会对整个模型进行全参数训练,但这会带来以下问题:

  1. 计算资源消耗大
  2. 容易过拟合
  3. 训练效率低

LoRA(Low-Rank Adaptation)技术通过在预训练模型的权重上添加低秩矩阵来减少可训练参数数量,特别适合LLM的微调。然而,视觉编码器通常需要全参数微调以获得更好的视觉特征表示。

解决方案实现

在modelscope/swift项目中,可以通过修改trainers/mixin.py文件来实现这一目标。核心思路是:

  1. 对Vit部分保持全参数训练
  2. 对LLM部分应用LoRA适配器
  3. 使用modules_to_save参数确保Vit参数不被冻结

具体实现时,需要在LoRA配置中明确指定哪些模块需要保持全参数训练。这种方法既保留了Vit的特征提取能力,又通过LoRA显著减少了LLM部分的训练参数。

技术优势

这种混合训练策略具有以下优势:

  1. 计算效率:相比全参数微调,大幅减少了训练参数
  2. 模型性能:Vit的全参数训练保证了视觉特征的充分学习
  3. 灵活性:可以根据任务需求灵活调整两部分的学习率
  4. 防止过拟合:LoRA技术有效控制了LLM部分的参数更新幅度

实践建议

在实际应用中,建议:

  1. 对Vit部分使用较小的学习率
  2. 监控两部分训练损失的变化趋势
  3. 根据硬件条件调整batch size
  4. 考虑使用梯度累积技术平衡显存使用

这种混合训练策略特别适合视觉-语言对齐任务,如视觉问答、图像描述生成等场景,能够在保证模型性能的同时显著提升训练效率。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8