ts-jest 项目中的 TypeScript 5.6+ 模块解析问题解析
问题背景
在 TypeScript 5.6 版本发布后,使用 ts-jest 进行测试的开发者遇到了一个关于 ES6 模块解析的兼容性问题。当项目中引用了以 ES6 模块形式发布的第三方库(如 OpenLayers)时,TypeScript 5.6+ 会识别这些库的 type: module 声明,导致生成的代码保持 ES6 模块语法,而 Jest 默认无法直接解析这种语法。
问题表现
开发者通常会配置 ts-jest 来转换 TypeScript 和 ES6 模块:
transform: {
'\\.[tj]sx?$': [
'ts-jest',
{
tsconfig: {
outDir: './.ts-jest'
}
}
],
},
transformIgnorePatterns: [
'/node_modules/(?!(ol|txml|geotiff|quick-lru|color-|rbush|earcut|pbf|quickselect))'
],
在 TypeScript 5.6 之前,这种配置可以正常工作。但从 5.6 版本开始,TypeScript 会识别第三方库的模块类型声明,导致生成的代码保留 ES6 模块语法(如 import/export),而 Jest 默认期望的是 CommonJS 格式的代码。
技术原因
TypeScript 5.6 引入了一个重要变化:它会根据 package.json 中的 type 字段和文件扩展名(如 .mjs)更准确地判断模块系统类型。这一改进虽然提高了准确性,但也带来了与 Jest 默认配置的兼容性问题,因为:
- Jest 默认使用 Node.js 的 CommonJS 模块系统
- TypeScript 5.6+ 会保留第三方库的 ES 模块语法
- 即使配置了
transformIgnorePatterns来转换特定 node_modules,生成的代码仍可能是 ES 模块格式
解决方案
方案一:启用 isolatedModules
最简单的解决方案是在 ts-jest 配置中启用 isolatedModules:
transform: {
'\\.[tj]sx?$': [
'ts-jest',
{
isolatedModules: true
}
],
}
这个选项会告诉 TypeScript 以隔离模式编译每个文件,不进行完整的类型检查,但会确保输出为 Jest 可识别的格式。
方案二:通过 Babel 转换模块
对于更复杂的情况(特别是涉及 .mjs 文件时),可以配置 Babel 来将 ES 模块转换为 CommonJS:
const presetConfig = createJsWithTsPreset({
babelConfig: {
plugins: [['@babel/plugin-transform-modules-commonjs']],
},
});
这种方法提供了更大的灵活性,可以处理各种模块格式的转换。
方案三:调整模块解析策略
对于 Angular 项目或使用类似工具链的项目,可以参考 jest-preset-angular 中的配置示例,专门处理 .mjs 文件的转换。
最佳实践建议
- 优先尝试
isolatedModules:这是最简单的解决方案,适用于大多数场景 - 复杂场景考虑 Babel:当遇到特殊文件扩展名或复杂模块结构时,Babel 转换更可靠
- 保持工具链更新:定期检查 ts-jest 和 TypeScript 的更新,了解新的配置选项
- 测试环境隔离:考虑为测试环境使用单独的 tsconfig,避免影响生产构建
总结
TypeScript 5.6+ 对模块系统的更严格处理虽然提高了准确性,但也带来了与测试工具链的兼容性挑战。通过理解这些变化背后的原理,开发者可以灵活选择最适合自己项目的解决方案,确保测试流程的顺畅运行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00