Volcano项目Capacity调度插件配置指南:实现多维资源弹性管理
2025-06-12 17:19:31作者:魏侃纯Zoe
引言
在Kubernetes集群中,GPU资源的高效调度一直是运维人员面临的挑战。Volcano作为一款面向高性能计算场景的Kubernetes批处理调度系统,其v1.9.0版本引入的Capacity调度插件为解决这一问题提供了新的思路。本文将深入解析如何配置Volcano的Capacity插件实现多维资源(特别是异构GPU)的弹性调度能力。
核心概念解析
Capacity调度插件的核心功能是允许管理员为不同队列设置资源配额(deserved值),当队列实际使用的资源超过配额时,系统可以触发资源回收机制。这种机制特别适合以下场景:
- 多租户环境下保证基础资源配额
- 突发性计算任务与常规任务的资源隔离
- 异构GPU资源的精细化管理
环境准备
1. 异构GPU资源上报
标准NVIDIA设备插件默认将所有GPU统一上报为nvidia.com/gpu资源,要实现按GPU型号区分上报需要定制化配置:
# 设备插件配置示例
resources:
gpus:
- pattern: "Tesla V100-SXM2-32GB"
name: v100
- pattern: "Tesla T4"
name: t4
关键修改点:
- 通过正则表达式匹配不同GPU型号
- 为每种GPU类型指定独立的资源名称
- 需要重新编译设备插件镜像以支持该功能
2. 遗留资源清理
部署新设备插件后,需手动清理节点上的旧GPU资源标签:
kubectl patch node <node-name> --type=json -p='[{"op":"remove","path":"/status/capacity/nvidia.com~1gpu"}]'
Volcano调度器配置
基础配置
修改volcano-scheduler-configmap配置,启用capacity和reclaim插件:
actions: "enqueue, allocate, backfill, reclaim"
tiers:
- plugins:
- name: priority
- name: gang
enablePreemptable: false
- name: conformance
- plugins:
- name: drf
enablePreemptable: false
- name: predicates
- name: capacity
- name: nodeorder
- name: binpack
关键参数说明
- actions序列:必须包含reclaim动作才能触发资源回收
- capacity插件:替换原有的proportion插件,提供基于绝对值的配额管理
- enablePreemptable:设置为false可避免频繁的抢占操作
队列配额管理
通过Queue资源定义各队列的资源配额:
apiVersion: scheduling.volcano.sh/v1beta1
kind: Queue
metadata:
name: gpu-queue
spec:
weight: 1
capability:
nvidia.com/t4: "2"
nvidia.com/v100: "1"
配额管理注意事项:
- 建议同时设置CPU、内存等基础资源配额
- 多维度资源配额应协调设置,避免单一维度触发回收
- 生产环境建议设置reclaimable参数控制回收策略
监控与运维
资源状态查看
volcanoctl queue list --detail
常见问题排查
- 资源未回收:检查scheduler日志级别设为4,确认reclaim动作是否触发
- 调度循环:适当调整reclaim间隔时间
- 指标缺失:确保DCGM Exporter适配了自定义资源名称
最佳实践建议
- 为关键业务队列设置guaranteed配额
- 测试环境先验证单维度资源回收
- 结合PriorityClass实现分级回收策略
- 定期审查实际使用量与配额设置
结语
Volcano的Capacity调度插件为异构计算环境提供了精细化的资源管理能力。通过本文介绍的配置方法,运维团队可以实现从物理GPU设备识别到上层调度策略的完整管控链路。实际部署时建议从小规模测试开始,逐步验证各维度的回收机制,最终构建符合业务需求的资源管理体系。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
234
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
296
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818