Pbandk 使用指南
1. 项目介绍
Pbandk 是一个专为 Kotlin 多平台设计的 Protocol Buffers 代码生成器及运行时库。此项目旨在从 .proto
定义文件自动生成符合 Kotlin 编程习惯的数据类,并支持在 JVM、Android、iOS、JavaScript、WebAssembly 等所有由 Kotlin Multiplatform 支持的平台上运行。Pbandk 强调遵循 Kotlin 的编程规范,提供易用且与平台兼容的API,同时也考虑到与其他语言如Java、Swift等的互操作性,尽管这受限于当前Kotlin多平台的限制。
2. 项目快速启动
添加依赖
首先,在你的 Kotlin 多平台项目中,确保你已经配置了 Protobuf 插件和添加了 Pbandk 作为依赖。以下是在 Gradle 中如何配置的示例:
repositories {
mavenCentral()
// 如果使用的是SNAPSHOT版本,则还需要添加下面的仓库
maven { url 'https://s01.oss.sonatype.org/content/repositories/snapshots/' }
}
dependencies {
implementation("com.streem.pbandk:pbandk-runtime:0.16.1")
}
创建 .proto 文件
创建一个简单的 .proto
文件,比如 addressbook.proto
:
syntax = "proto3";
package tutorial;
message Person {
string name = 1;
int32 id = 2;
string email = 3;
repeated PhoneNumber phones = 4;
}
message PhoneNumber {
string number = 1;
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
}
PhoneType type = 2;
}
message AddressBook {
repeated Person people = 1;
}
生成 Kotlin 代码
你需要通过 Protobuf 编译器并结合 Pbandk 的插件来生成 Kotlin 代码。这通常通过Gradle插件自动完成,具体步骤依据项目的构建脚本而定。一旦配置正确,执行相应的编译任务后,会自动生成对应的 Kotlin 类在指定的包路径下。
3. 应用案例和最佳实践
使用 Pbandk 生成的 Person
示例数据类,你可以这样创建一个新的 Person
实例并序列化它:
import tutorial.Person
val johnDoe = Person(name = "John Doe", id = 1, email = "john.doe@example.com")
val bytes = pbandk.MessageWriter(johnDoe).toByteArray()
最佳实践中,你应该充分利用 Kotlin 的特性,如利用密封类处理 oneof
情况,以及通过 Ktor 或其他网络库将生成的消息高效地发送到服务器。
4. 典型生态项目
Pbandk 虽然主要聚焦于 Kotlin Multiplatform 环境中的 Protobuf 支持,但其在多平台服务端和客户端通信领域有着广泛的应用潜力。例如,结合 Ktor 开发RESTful服务,或是作为微服务架构中服务间通信的基础,利用其生成的代码进行高效的数据序列化和反序列化。
在实际开发中,你可能会遇到需要与gRPC服务交互的情况。虽然Pbandk本身不直接生成gRPC代码,但它提供了接口允许开发者实现自己的服务代码生成逻辑,从而与gRPC生态无缝对接。
通过以上介绍,你应该能够快速上手 Pbandk,将其融入你的多平台项目中,享受高效且一致的跨平台数据交换体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









