Mooncake项目中大块数据传输的内存越界问题分析
问题背景
在使用Mooncake项目的transfer_engine_bench进行数据传输性能测试时,发现当设置较大的block_size参数(如65537)时,程序会抛出"Address not registered by any device(s)"的错误,而较小的block_size(如65536)则能正常工作。
问题现象
测试环境配置如下:
- 硬件环境:使用CX7网卡和L40S GPU
- Mooncake版本:commit 0d9e226
- 测试模式:双节点测试,h1作为服务端,h2作为客户端
当block_size设置为65536时测试正常,但当设置为65537或更大值时,客户端会出现以下错误:
Address not registered by any device(s) 0x7f37d1ff3fff
根本原因分析
经过深入分析,发现问题的根源在于内存访问越界。transfer_engine_bench工具默认会分配1GB的缓冲区。根据偏移量计算公式:
最大内存访问量 = batch_size × block_size × threads
在测试配置中:
- batch_size = 1024
- threads = 16
当block_size=65536时:
1024 × 65536 × 16 = 1GB (正好等于默认缓冲区大小)
而当block_size=65537时:
1024 × 65537 × 16 ≈ 1.000015GB (略大于1GB)
这种微小的超出导致了RDMA无法访问未注册的内存区域,从而触发了错误。
解决方案
针对这个问题,可以考虑以下几种解决方案:
-
增加默认缓冲区大小:修改transfer_engine_bench工具,根据实际测试参数动态计算所需缓冲区大小,或者提供更大的默认缓冲区。
-
参数合法性检查:在程序启动时,根据batch_size、block_size和threads参数计算所需内存量,并与实际分配的缓冲区大小进行比较,如果超出则给出明确的错误提示。
-
动态内存分配:改为动态分配足够大的缓冲区,而不是使用固定大小的缓冲区。
最佳实践建议
在使用transfer_engine_bench进行性能测试时,建议:
-
预先计算内存需求,确保:
batch_size × block_size × threads ≤ 分配的缓冲区大小
-
对于大块数据传输测试,考虑使用--verbose选项获取更详细的日志信息。
-
在测试前了解硬件限制,特别是GPU和NIC的内存限制。
总结
这个案例展示了在高性能计算和RDMA编程中精确控制内存使用的重要性。微小的计算误差可能导致严重的运行时错误。开发者在使用类似工具时,应当充分理解其内存管理机制,合理配置参数,以避免类似的内存越界问题。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









