Strano 技术文档
Strano 是一个基于 Github 的 Capistrano 部署管理 UI,允许用户通过简洁的 Web 界面运行任何 Capistrano 任务。本文档将详细介绍 Strano 的安装、使用、API 以及配置方法,帮助用户快速上手并深入了解该项目。
1. 安装指南
Strano 是一个基于 Rails 的应用程序,使用 Sidekiq 作为后台任务处理引擎。以下是安装步骤:
-
克隆仓库
首先,从 Github 克隆 Strano 仓库:git clone https://github.com/joelmoss/strano.git
-
安装依赖
进入项目目录并运行安装脚本:cd strano script/bootstrap
-
启动应用
安装完成后,启动 Rails 应用:bundle exec rails s
注意:Strano 无法在 Heroku 上运行,因为项目仓库需要克隆到应用本地的 vendors/repos
目录中。
2. 项目的使用说明
Strano 的使用非常简单,以下是基本的使用步骤:
-
创建项目
在 Strano 的 Web 界面中,创建一个项目并关联到你的 Github 仓库。Strano 会自动使用仓库中的 Capistrano 配置。 -
运行任务
通过 Web 界面选择并运行 Capistrano 任务。所有任务都会被记录,方便后续查看历史记录。 -
查看历史
在任务历史页面,你可以查看所有任务的执行记录,包括执行人、执行时间和任务详情。
3. 项目 API 使用文档
Strano 目前没有公开的 API 文档,但你可以通过查看源代码或项目 Wiki 来了解其内部 API 的使用方法。如果你有 API 相关的需求,建议直接查看项目的源代码或提交 Issue 进行讨论。
4. 项目配置
Strano 的配置非常简单,只需定义三个必需的配置变量,其余配置可以根据需要进行覆盖。
-
Github Key 和 Secret
创建一个 Github 应用,并将生成的 Key 和 Secret 分别配置为github_key
和github_secret
。 -
Public SSH Key
为了从 Github 克隆仓库,需要在public_ssh_key
中配置一个公钥。 -
配置文件
你可以通过创建config/strano.yml
文件或在环境变量中定义这些配置。参考config/strano.example.yml
文件了解所有可配置的变量。
5. 后台任务处理
Strano 使用 Sidekiq 处理后台任务。你可以通过以下命令启动 Sidekiq 队列:
bundle exec sidekiq
启动后,你可以通过 http://YOUR-STRANO-APP/sidekiq
监控任务队列。
6. 贡献指南
如果你希望为 Strano 贡献代码,请遵循以下步骤:
- Fork Strano 仓库。
- 创建一个主题分支:
git checkout -b my_branch
- 推送你的分支:
git push origin my_branch
- 创建一个 Pull Request。
7. 许可证
Strano 采用 MIT 许可证发布,详细信息请参考 MIT 许可证文档。
通过本文档,你应该能够顺利安装、配置并使用 Strano。如果你有任何问题或建议,欢迎通过 Github 提交 Issue 或 Pull Request。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









