PyTorch Lightning中训练与验证指标同图绘制的实现方法
2025-05-05 04:53:12作者:申梦珏Efrain
在深度学习模型训练过程中,监控训练和验证指标的变化趋势对于理解模型性能至关重要。PyTorch Lightning作为PyTorch的高级封装框架,提供了便捷的日志记录功能。然而,在最新版本中,一些日志记录的行为发生了变化,特别是关于如何在同一图表中绘制训练和验证指标的问题。
问题背景
在PyTorch Lightning 1.7.7版本中,开发者可以通过log_dict
方法将训练和验证指标记录在同一图表中,代码如下:
self.log_dict({
'output_1 Loss': {'VALIDATION': 0},
'output_2 Loss': {'VALIDATION': 0}
})
这种方法会在TensorBoard等可视化工具中生成包含多条曲线的图表,便于直观比较训练和验证过程。然而,在升级到2.2.0版本后,这种写法会抛出ValueError
异常,提示字典值不能被记录。
解决方案
直接日志记录方法
在PyTorch Lightning 2.x版本中,推荐使用更直接的方式记录指标:
self.log_dict({
'output_1 Loss': 0,
'output_2 Loss': 0
})
或者等效的单个日志记录:
self.log('output_1 Loss', 0)
self.log('output_2 Loss', 0)
使用TensorBoard原生接口
如果需要保持训练和验证指标在同一图表中的显示效果,可以直接使用TensorBoard的原生接口:
self.logger.experiment.add_scalars('output_1 Loss', {'TRAIN': 0, 'VALIDATION': 0}, global_step)
这种方法会生成包含多条曲线的图表,与旧版本中的显示效果一致。
分布式训练注意事项
在分布式数据并行(DDP)训练场景下,日志记录需要特别注意:
- 避免使用
rank_zero_only=True
参数,这会导致日志只在主节点记录 - 对于需要跨设备聚合的指标,应保留
sync_dist=True
参数 - 直接使用TensorBoard接口时,PyTorch Lightning会自动处理多GPU情况,确保只在主节点记录
最佳实践建议
- 指标分类记录:将训练和验证指标分开记录,但使用相同的指标名前缀
- 可视化处理:在TensorBoard等工具中使用自定义仪表盘将相关指标组织在一起
- 版本兼容性:在升级PyTorch Lightning版本时,注意测试日志记录功能
- 文档参考:仔细阅读PyTorch Lightning官方文档中关于日志记录的高级用法
通过合理使用这些方法,开发者可以在新版本中实现与旧版本相同的可视化效果,同时保证代码的规范性和可维护性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5